Investigation of the Master Curve Concept for Ferritic Ductile Cast Iron
- Within fracture mechanics safety assessment for steels in nuclear technology, the probabilistic master curve (MC) concept according to ASTM E1921 is currently used for quasi-static loading conditions as a supplement to the established deterministic ASME reference curve concept. However, for ferritic ductile cast iron (DCI), a systematic review of potential modifications to the assumptions and the procedure according to ASTM E1921 and an associated validation are still lacking. For this reason, the application of the fracture mechanics MC concept to ferritic ductile cast iron is being investigated in a joint research project between MPA Stuttgart and BAM Berlin. According to IAEA SSG-26, the safety assessment of DCI containers for transport as well as storage of radioactive materials is based on the fracture mechanics criterion of general crack initiation exclusion. Within this context, the focus of the research project is on brittle fracture. The goal is the establishment of aWithin fracture mechanics safety assessment for steels in nuclear technology, the probabilistic master curve (MC) concept according to ASTM E1921 is currently used for quasi-static loading conditions as a supplement to the established deterministic ASME reference curve concept. However, for ferritic ductile cast iron (DCI), a systematic review of potential modifications to the assumptions and the procedure according to ASTM E1921 and an associated validation are still lacking. For this reason, the application of the fracture mechanics MC concept to ferritic ductile cast iron is being investigated in a joint research project between MPA Stuttgart and BAM Berlin. According to IAEA SSG-26, the safety assessment of DCI containers for transport as well as storage of radioactive materials is based on the fracture mechanics criterion of general crack initiation exclusion. Within this context, the focus of the research project is on brittle fracture. The goal is the establishment of a methodology to determine and assess dynamic fracture toughness values of DCI in the ductile-to-brittle transition regime, using samples extracted from a component.
The experimental program uses a DCI material of grade GJS-400, which is generally used for transport and storage containers of radioactive materials. Firstly, a basic mechanical-technological material characterization will be performed consisting of tensile, Charpy and Pellini tests. Following the material characterization, the loading rate relevant for brittle fracture will be determined using instrumented C(T)25-fracture tests at a temperature of -40°C. To be able to transfer the relevant loading rate to other specimen geometries or sizes, the time-dependent course of the Weibull stress is assessed via numerical analyses. With this information an extensive experimental program consisting of DC(T)9, C(T)25, C(T)50, SE(B)10, SE(B)25 and SE(B)140 specimens is performed. These experimental results will be further supported by numerical and fractographic analyses. The empirical experimental database developed for DCI materials will be used to assess the applicability of the MC concept for DCI materials under dynamic loading.
At the current time manufacturing and precracking of test specimens is ongoing. The authors provide first results concerning the mechanical-technological material characterization, the relevant loading rate for brittle fracture determined via C(T)25 tests, and some early results of other specimen types. These experimental results are also supported by preliminary numerical and statistical analyses.…