Assessing ferrite content in duplex stainless steel weld metals: WRC '92 predictions vs. practical measurements
- The weldability of stainless steels is largely controlled by the chemical composition, and alloys with ferritic or ferritic-austenitic solidification show the highest resistance to hot cracking. As the resulting phase balance also affects the final properties, it may be beneficial to both foresee and measure the weld metal ferrite content. The WRC ’92 constitution diagram is currently the most accurate prediction tool available, but it does not take the cooling rate into consideration and the precision may be less accurate for stainless steels with high ferrite numbers (FN). This study aims to validate the reliability of the WRC ’92 diagram for weld metals with FN > 50. The chemical composition was altered through gas tungsten arc welding (GTAW) of UNS S32205 with ER347 filler wire that had been PVD-coated with either niobium (Nb), copper (Cu), nickel (Ni), manganese (Mn), carbon (C), or silicon (Si). The actual ferrite content was assessed using image analysis, FERITSCOPE® and X-rayThe weldability of stainless steels is largely controlled by the chemical composition, and alloys with ferritic or ferritic-austenitic solidification show the highest resistance to hot cracking. As the resulting phase balance also affects the final properties, it may be beneficial to both foresee and measure the weld metal ferrite content. The WRC ’92 constitution diagram is currently the most accurate prediction tool available, but it does not take the cooling rate into consideration and the precision may be less accurate for stainless steels with high ferrite numbers (FN). This study aims to validate the reliability of the WRC ’92 diagram for weld metals with FN > 50. The chemical composition was altered through gas tungsten arc welding (GTAW) of UNS S32205 with ER347 filler wire that had been PVD-coated with either niobium (Nb), copper (Cu), nickel (Ni), manganese (Mn), carbon (C), or silicon (Si). The actual ferrite content was assessed using image analysis, FERITSCOPE® and X-ray diffraction (XRD). While the WRC ’92 diagram predictions were deemed accurate to acceptable for Ni, Si, and Mn, notable deviations were observed for Nb, Cu, and C. The FeriteScope exhibited a consistent trend with image analysis, though the values were higher, and scatter was wider, and the conversion factor is open for discussion. The lowest accuracy and largest spread were obtained using non-contact XRD, rendering it unsuitable for ferrite measurements of welds.…
Autor*innen: | Arne KrommORCiD |
---|---|
Koautor*innen: | Lukas Quackatz, E.M. Westin, Axel Griesche, Thomas Kannengießer, K. Treutler, V. Wesling |
Dokumenttyp: | Vortrag |
Veröffentlichungsform: | Präsentation |
Sprache: | Englisch |
Jahr der Erstveröffentlichung: | 2024 |
Organisationseinheit der BAM: | 9 Komponentensicherheit |
9 Komponentensicherheit / 9.4 Integrität von Schweißverbindungen | |
DDC-Klassifikation: | Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten |
Freie Schlagwörter: | Duplex Stainless Steel; Ferrite; WRC 92 |
Themenfelder/Aktivitätsfelder der BAM: | Material |
Material / Degradation von Werkstoffen | |
Veranstaltung: | IIW Intermediate Meeting Comission IX-H |
Veranstaltungsort: | Incheon, Republic of Korea |
Beginndatum der Veranstaltung: | 12.03.2024 |
Enddatum der Veranstaltung: | 14.03.2024 |
Verfügbarkeit des Dokuments: | Datei im Netzwerk der BAM verfügbar ("Closed Access") |
Datum der Freischaltung: | 27.03.2024 |
Referierte Publikation: | Nein |
Eingeladener Vortrag: | Nein |