- Capillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice.
To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2–4 times lower sensitivityCapillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice.
To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2–4 times lower sensitivity compared to the commercial setups. However, the VCN-based setup provided lower noise levels and better linear correlation from the analysis of calibration standards, which resulted in indistinguishable LOD and LOQ values from the in-house-built VCN-based and commercial setups for CE-ICP-MS analysis. The VCN is found to have the highest baseline stability with a standard deviation of 3500 cts s−1, corresponding to an RSD of 2.7%. High reproducibility is found with the VCN with a peak area RSD of 4.1% between 3 replicate measurements.…