Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-594320

Gasquellenlokalisierung mit Drohnenschwärmen

  • Gasquellenlokalisierungen (Gas Source Localization, GSL) tragen dazu bei, die Folgen von Industrieunfällen und Naturkatastrophen zu mildern. Während die GSL, wenn von Menschen durchgeführt, gefährlich und zeitaufwändig ist, können Schwärme von wendigen und kostengünstigen Nanodrohnen die Effizienz und Sicherheit der Suche erhöhen. Da die geringe Nutzlast von Nanodrohnen die Sensor- und Rechenressourcen einschränkt, werden Strategien zur Koordination des Roboterschwarms verwendet, die von biologischen Schwärmen, wie Kolonien sozialer Insekten, inspiriert sind. Die meisten Schwarm-GSL-Strategien verwenden das Maximum der Gaskonzentrationsverteilung zur Schätzung der Gasquellenposition. Experimente legen jedoch nahe, dass die Intermittenz der Gasverteilung vielversprechender ist. In diesem Beitrag wird eine neuartige GSL-Strategie für Schwärme vorgestellt, die auf Pheromonkommunikation und Intermittenz der Gasverteilung basiert. Die Agenten, d.h. die Nanodrohnen, emittieren PheromonmarkerGasquellenlokalisierungen (Gas Source Localization, GSL) tragen dazu bei, die Folgen von Industrieunfällen und Naturkatastrophen zu mildern. Während die GSL, wenn von Menschen durchgeführt, gefährlich und zeitaufwändig ist, können Schwärme von wendigen und kostengünstigen Nanodrohnen die Effizienz und Sicherheit der Suche erhöhen. Da die geringe Nutzlast von Nanodrohnen die Sensor- und Rechenressourcen einschränkt, werden Strategien zur Koordination des Roboterschwarms verwendet, die von biologischen Schwärmen, wie Kolonien sozialer Insekten, inspiriert sind. Die meisten Schwarm-GSL-Strategien verwenden das Maximum der Gaskonzentrationsverteilung zur Schätzung der Gasquellenposition. Experimente legen jedoch nahe, dass die Intermittenz der Gasverteilung vielversprechender ist. In diesem Beitrag wird eine neuartige GSL-Strategie für Schwärme vorgestellt, die auf Pheromonkommunikation und Intermittenz der Gasverteilung basiert. Die Agenten, d.h. die Nanodrohnen, emittieren Pheromonmarker in einer virtuellen Umgebung, wenn sie eine neue Gaswolke feststellen. Die Agenten werden durch virtuelle Kräfte gesteuert und nutzen abwechselnd das Wissen des Schwarms, indem sie dem Pheromongradienten folgen, oder erkunden den Suchraum, indem sie einen Zufallspunkt ansteuern. Zur Kollisionsvermeidung werden die Agenten durchgehend von anderen Agenten und Wänden abgestoßen. Die Strategie wurde auf drei Nanodrohnen implementiert und durch ein Experiment in einem Innenraum mit einer statischen Gasquelle validiert. Die Ergebnisse zeigen eine Verbesserung gegenüber maximabasierten Verfahren und geringe Lokalisierungsfehler in Windrichtung.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:F. Häusler, J. Stührenberg, Patrick P. NeumannORCiD
Persönliche Herausgeber*innen:K. Sigalov, P. Hagedorn, P. Schönfelder, B. Faltin, S. Zentgraf, M. Block
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Deutsch
Titel des übergeordneten Werkes (Deutsch):Tagungsband des 34. Forum Bauinformatik 2023
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.1 Sensorik, mess- und prüftechnische Verfahren
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Herausgeber (Institution):Ruhr-Universität Bochum
Erste Seite:168
Letzte Seite:175
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Bouts; Mobile Robotic Olfaction; Mobile Sensorik; Nanodrohnen; Pheromonkommunikation; Schwarmrobotik
Themenfelder/Aktivitätsfelder der BAM:Umwelt
Umwelt / Sensorik
Veranstaltung:34. Forum Bauinformatik 2023
Veranstaltungsort:Bochum, Germany
Beginndatum der Veranstaltung:06.08.2023
Enddatum der Veranstaltung:08.08.2023
DOI:10.13154/294-10088
URN:urn:nbn:de:kobv:b43-594320
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - CC BY - Namensnennung 4.0 International
Datum der Freischaltung:26.01.2024
Referierte Publikation:Nein
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.