Imaging spectroscopic ellipsometry for investigation of energy materials and materials for nano-electronics
- Ellipsometry is a very powerful tool used for accurate material investigation in a wide wavelength range. It is a non-destructive and fast method. Imaging ellipsometry as a combination of optical microscopy and ellipsometry enables spatially resolved measurements when determining the layer thickness and dielectric properties of thin layers. It is known for its high polarisation sensitivity and high contrast for the surface structures. In this contribution we show the application of the imaging ellipsometry for detection of defects in energy materials and quality validation of possible reference materials for nano-electronics. Defects in wide bandgap semiconductors, in homoepitaxial SiC and heteroepitaxial GaN layers on transparent SiC substrates, can be successfully detected and classified by means of imaging ellipsometry. Correlation of imaging ellipsometry results with results from complementary techniques such as white light interference microscopy as well as atomic forceEllipsometry is a very powerful tool used for accurate material investigation in a wide wavelength range. It is a non-destructive and fast method. Imaging ellipsometry as a combination of optical microscopy and ellipsometry enables spatially resolved measurements when determining the layer thickness and dielectric properties of thin layers. It is known for its high polarisation sensitivity and high contrast for the surface structures. In this contribution we show the application of the imaging ellipsometry for detection of defects in energy materials and quality validation of possible reference materials for nano-electronics. Defects in wide bandgap semiconductors, in homoepitaxial SiC and heteroepitaxial GaN layers on transparent SiC substrates, can be successfully detected and classified by means of imaging ellipsometry. Correlation of imaging ellipsometry results with results from complementary techniques such as white light interference microscopy as well as atomic force microscopy contribute to understanding of surface topography and defect formation mechanisms. We discuss the potential of different methods for analysing ellipsometric map data for monitoring the defect densities. Electric properties of materials at the nanoscale can be investigated by means of scanning probe microscopy methods such as scanning microwave microscopy and conductive atomic force microscopy. However, development of new robust and easy-to-use calibration methods and calibration standards is essential to increase the traceability of these methods and allow their broad application in industry. We show how imaging spectroscopic ellipsometry can be used for development and monitoring of processing quality of patterned reference samples based on indium tin oxide (ITO) layer with different thickness and conductivity.…
Autor*innen: | Elena Ermilova |
---|---|
Koautor*innen: | Andreas HertwigORCiD, Matthias Weise, Jana Grundmann, Bernd Bodermann, Petr Klapetek, Johannes Hoffmann, Sophie de Preville |
Dokumenttyp: | Vortrag |
Veröffentlichungsform: | Präsentation |
Sprache: | Englisch |
Jahr der Erstveröffentlichung: | 2023 |
Organisationseinheit der BAM: | 6 Materialchemie |
6 Materialchemie / 6.1 Oberflächen- und Dünnschichtanalyse | |
DDC-Klassifikation: | Naturwissenschaften und Mathematik / Chemie / Analytische Chemie |
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten | |
Freie Schlagwörter: | Ellipsometry; Energy materials; Nanoelectronics; Thin Films; Transparent Conductive Oxides; White light interference microscopy; Wide-bandgap semiconductors |
Themenfelder/Aktivitätsfelder der BAM: | Chemie und Prozesstechnik |
Material | |
Material / Nano | |
Veranstaltung: | 12th Workshop on Spectroscopic Ellipsometry (WSE) |
Veranstaltungsort: | Prague, Czech Republic |
Beginndatum der Veranstaltung: | 18.09.2023 |
Enddatum der Veranstaltung: | 22.09.2023 |
Verfügbarkeit des Dokuments: | Datei im Netzwerk der BAM verfügbar ("Closed Access") |
Datum der Freischaltung: | 19.01.2024 |
Referierte Publikation: | Nein |
Eingeladener Vortrag: | Nein |