Residual stress formation in DED-arc manufactured high strength steel components
- Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits theAdditive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer.…
Autor*innen: | Karsten Wandtke |
---|---|
Koautor*innen: | Dirk Schröpfer, Arne Kromm, Thomas Kannengießer, R. Scharf- Wildenhain, A. Hälsig, J. Hensel |
Dokumenttyp: | Vortrag |
Veröffentlichungsform: | Präsentation |
Sprache: | Englisch |
Jahr der Erstveröffentlichung: | 2023 |
Organisationseinheit der BAM: | 9 Komponentensicherheit |
9 Komponentensicherheit / 9.2 Versuchsanlagen und Prüftechnik | |
9 Komponentensicherheit / 9.4 Integrität von Schweißverbindungen | |
DDC-Klassifikation: | Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten |
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik | |
Freie Schlagwörter: | Additive Manufacturing; High strength steel; Residual Stress |
Themenfelder/Aktivitätsfelder der BAM: | Energie |
Material | |
Material / Additive Fertigung | |
Veranstaltung: | IIW Intermediate Meeting C-XIII |
Veranstaltungsort: | Online meeting |
Beginndatum der Veranstaltung: | 20.04.2023 |
Verfügbarkeit des Dokuments: | Datei im Netzwerk der BAM verfügbar ("Closed Access") |
Datum der Freischaltung: | 19.01.2024 |
Referierte Publikation: | Nein |
Eingeladener Vortrag: | Nein |