Revealing Silver Nanoparticle Uptake by Macrophages Using SR-μXRF and LA-ICP-MS

  • To better study the impact of nanoparticles on both in vitro and in vivo models, tissue distribution and cellular doses need to be described more closely. Here silver nanoparticles were visualized in alveolar macrophages by means of synchrotron radiation micro X-ray fluorescence spectroscopy (SR-μXRF) with high spatial resolution of 3 × 3 μm2. For the spatial allocation of silver signals to cells and tissue structures, additional elemental labeling was carried out by staining with eosin, which binds to protein and can be detected as bromine signal with SR-μXRF. The method was compatible with immunostaining of macrophage antigens. We found that the silver distribution obtained with SR-μXRF was largely congruent with distribution maps from a subsequent laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of the same tissue sites. The study shows a predominant, though not exclusive uptake of silver into alveolar macrophages in the rat lung, which can be modeled by aTo better study the impact of nanoparticles on both in vitro and in vivo models, tissue distribution and cellular doses need to be described more closely. Here silver nanoparticles were visualized in alveolar macrophages by means of synchrotron radiation micro X-ray fluorescence spectroscopy (SR-μXRF) with high spatial resolution of 3 × 3 μm2. For the spatial allocation of silver signals to cells and tissue structures, additional elemental labeling was carried out by staining with eosin, which binds to protein and can be detected as bromine signal with SR-μXRF. The method was compatible with immunostaining of macrophage antigens. We found that the silver distribution obtained with SR-μXRF was largely congruent with distribution maps from a subsequent laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of the same tissue sites. The study shows a predominant, though not exclusive uptake of silver into alveolar macrophages in the rat lung, which can be modeled by a similar uptake in cultured alveolar macrophages. Advantages and limitations of the different strategies for measuring nanoparticle uptake at the single cell level are discussed.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • acs.chemrestox.9b00507.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:O. Reifschneider, A. Vennemann, Günter Buzanich, Martin RadtkeORCiD, Uwe Reinholz, Heinrich Riesemeier, J Hogeback, C. Köppen, M. Großgarten, M. Sperling, M. Wiemann, U. Karst
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Chemical Research in Toxicology
Jahr der Erstveröffentlichung:2020
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.3 Strukturanalytik
Verlag:American Chemical Society
Jahrgang/Band:33
Ausgabe/Heft:5
Erste Seite:1250
Letzte Seite:1255
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:BAMline; Macrophagen; Nanoparticle; Synchrotron; XRF
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Chemie und Prozesstechnik / Chemische Charakterisierung und Spurenanalytik
DOI:10.1021/acs.chemrestox.9b00507
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:10.06.2020
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:10.06.2020
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.