Comparing Nontargeted LC-MS Methods by Co-visualizing Linear Dynamic Range and Chemical Coverage

  • INTRODUCTION Biological and environmental samples contain thousands of small molecule species that all vary in chemical properties and concentration range. Identifying and quantifying all these chemical entities remains a long-term goal in metabolomics and related systems approaches. Due to its broad selectivity, nontargeted LC-MS is usually the method of choice for broad chemical screening. Optimizing nontargeted LC-MS methods, however, is less straightforward than for targeted methods where sensitivity, specificity, linearity etc. serve as well-established performance criteria. We therefore investigated linear dynamic range (LDR) and chemical classification as alternative performance criteria to guide nontargeted method development. EXPERIMENTAL METHODS LDR was defined as the linear portion of a feature’s response curve over multiple concentration levels. Comparing the LDR of features across methods can be expected to be significantly more robust than comparing signal intensitiesINTRODUCTION Biological and environmental samples contain thousands of small molecule species that all vary in chemical properties and concentration range. Identifying and quantifying all these chemical entities remains a long-term goal in metabolomics and related systems approaches. Due to its broad selectivity, nontargeted LC-MS is usually the method of choice for broad chemical screening. Optimizing nontargeted LC-MS methods, however, is less straightforward than for targeted methods where sensitivity, specificity, linearity etc. serve as well-established performance criteria. We therefore investigated linear dynamic range (LDR) and chemical classification as alternative performance criteria to guide nontargeted method development. EXPERIMENTAL METHODS LDR was defined as the linear portion of a feature’s response curve over multiple concentration levels. Comparing the LDR of features across methods can be expected to be significantly more robust than comparing signal intensities for a single concentration. To determine LDR for all features, a computational workflow was implemented in the R programming language. For estimating the linear portion of a curve, several mathematical approaches including linear, non-linear and piecewise linear regression were evaluated. Chemical classification was based on ClassyFire, which computes chemical classes for a given structure. To avoid false classifications for incorrectly annotated compounds, we took the following statistical approach. For each compound, multiple likely annotation hypotheses were derived using a recently described workflow[2]. All annotation hypotheses were submitted to ClassyFire and obtained classifications were ranked by frequency. The most frequently suggested class was kept for further analysis. Finally, LDR and chemical classes were visualized together on a molecular network, which was constructed using the well-established MS/MS similarity approach. RESULTS AND DISCUSSION For technical validation of the workflow, several hundred curve fits obtained from the different regression models were reviewed visually. Piecewise linear regression performed the most reliably with respect to the heterogeneous curve shapes of ‘real-life’ features. Validation of chemical classification was performed against a compound library, which showed that 90% of ~450 library compounds were correctly classified using the described approach. Two liquid chromatography methods (HILIC, RPC) as well as two electrospray ionization variants (low/high-temperature ESI) applied to urinary metabolomics were exemplarily studied to test the workflow. Molecular network visualization indicated that of all analytical setups, HILIC/high temperature ESI performed best in terms of high LDR achieved over a wide range of compound classes. Despite one order of magnitude lower sensitivity, HILIC/low temperature ESI showed similar chemical coverage, except for organic nitrogen compounds that were underrepresented compared to high-temperature ESI. Both RPC setups were inferior to the HILIC setups in terms of high-LDR features, supporting previous findings for the given matrix. The higher relative representation of benzenoids and lipids in RPC demonstrated that the workflow successfully captured expected selectivity differences between chromatographies. CONCLUSION When comparing nontargeted LC-MS methods for optimization purposes, ideally all available quantitative and qualitative information should be integrated. The present workflow follows this idea. Visualizing LDR and chemical classes of all features on a molecular network quickly indicated differences in method selectivity that were otherwise difficult to spot. As an automated approach, it is easily applied to repeated optimization steps, enabling effective optimization strategies.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Poster_EURACHEM_BAM_Berlin_Carsten_Jaeger.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Carsten Jaeger
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.8 Umweltanalytik
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Chemical coverage; Linear dynamic range; Liquid chromatography-mass spectrometry; Method development; Nontargeted approach
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Chemie und Prozesstechnik / Chemische Charakterisierung und Spurenanalytik
Umwelt
Veranstaltung:EURACHEM Workshop
Veranstaltungsort:Tartu, Estonia
Beginndatum der Veranstaltung:20.05.2019
Enddatum der Veranstaltung:21.05.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:27.06.2019
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.