Experimental and numerical investigations on the effect of fracture geometry and fracture aperture distribution on flow and solute transport in natural fractures

  • The impact of fracture geometry and aperture distribution on fluid movement and on non-reactive solute transport was investigated experimentally and numerically in single fractures. For this purpose a hydrothermally altered and an unaltered granite drill core with axial fractures were investigated. Using three injection and three extraction locations at top and bottom of the fractured cores, different dipole flow fields were examined. The conservative tracer (Amino-G) breakthrough curves were measured using fluorescence spectroscopy. Based on 3-D digital data obtained by micro-computed tomography 2.5-D numerical models were generated for both fractures by mapping the measured aperture distributions to the 2-D fracture geometries (x-y plane). Fluid flow and tracer transport were simulated using COMSOL Multiphysics®. By means of numerical simulations and tomographic imaging experimentally observed breakthrough curves can be understood and qualitatively reproduced. The experiments andThe impact of fracture geometry and aperture distribution on fluid movement and on non-reactive solute transport was investigated experimentally and numerically in single fractures. For this purpose a hydrothermally altered and an unaltered granite drill core with axial fractures were investigated. Using three injection and three extraction locations at top and bottom of the fractured cores, different dipole flow fields were examined. The conservative tracer (Amino-G) breakthrough curves were measured using fluorescence spectroscopy. Based on 3-D digital data obtained by micro-computed tomography 2.5-D numerical models were generated for both fractures by mapping the measured aperture distributions to the 2-D fracture geometries (x-y plane). Fluid flow and tracer transport were simulated using COMSOL Multiphysics®. By means of numerical simulations and tomographic imaging experimentally observed breakthrough curves can be understood and qualitatively reproduced. The experiments and simulations suggest that fluid flow in the altered fracture is governed by the 2-D fracture geometry in the x-y plane, while fluid flow in the unaltered fracture seems to be controlled by the aperture distribution. Moreover, we demonstrate that in our case simplified parallel-plate models fail to describe the experimental findings and that pronounced tailings can be attributed to complex internal heterogeneities. The results presented, implicate the necessity to incorporate complex domain geometries governing fluid flow and mass transport into transport modeling.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Stoll-paper.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:M. Stoll, F. M. Huber, M. Trumm, F. Enzmann, Dietmar Meinel, A. Wenka, E. Schill, T. Schäfer
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of Contaminant Hydrology
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.5 Röntgenbildgebung
Verlag:Elsevier B.V.
Jahrgang/Band:221
Erste Seite:82
Letzte Seite:97
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Micro-computed tomography; Natural fracture geometry; Solute transport experiments
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Elektrische Energiespeicher und -umwandlung
Umwelt
Umwelt / Umwelt-Material-Interaktionen
DOI:10.1016/j.jconhyd.2018.11.008
ISSN:0169-7722/
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:24.04.2019
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:24.04.2019
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.