Microwave-assisted high-speed silver nanoparticle synthesis

  • Ever since increasing a reaction’s yield while shortening the reaction time is the main objective in synthesis optimization. Microwave reactors meet these demands. In literature however their usage is under discussion due to claims of the existence of non-thermal effects resulting from the microwave radiation. Especially for nano-reference-material syntheses it is of crucial importance to be aware of influences on the reaction pathway. Therefore, we compare ultra-small silver nanoparticles with mean radii of 3 nm, synthesized via conventional and microwave heating. We employed a versatile one-pot polyol synthesis of poly(acrylic acid) (PAA) stabilized silver nanoparticles, which display superior catalytic properties. No microwave specific effects in terms of particle size distribution characteristics, as derived by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS), are revealed. Due to the microwave reactor’s characteristics of a closed system, syntheses can beEver since increasing a reaction’s yield while shortening the reaction time is the main objective in synthesis optimization. Microwave reactors meet these demands. In literature however their usage is under discussion due to claims of the existence of non-thermal effects resulting from the microwave radiation. Especially for nano-reference-material syntheses it is of crucial importance to be aware of influences on the reaction pathway. Therefore, we compare ultra-small silver nanoparticles with mean radii of 3 nm, synthesized via conventional and microwave heating. We employed a versatile one-pot polyol synthesis of poly(acrylic acid) (PAA) stabilized silver nanoparticles, which display superior catalytic properties. No microwave specific effects in terms of particle size distribution characteristics, as derived by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS), are revealed. Due to the microwave reactor’s characteristics of a closed system, syntheses can be carried out at temperatures beyond the solvent’s boiling point. Particle formation was accelerated by a factor of 30 by increasing the reaction temperature from 200 °C to 250 °C. The particle growth process follows a cluster coalescence mechanism. A post-synthetic incubation step at 250 °C induces a further growth of the particles while the size distribution broadens. Thus, utilization of microwave reactors enables an enormous decrease of the reaction time as well as the opportunity of tuning the particles’ size. Possibly, decomposition of the stabilizing ligand at elevated temperatures results in reduced yields. A temperature of 250 °C and a corresponding reaction time of 30 s represent a compromise between short reaction times and high yields.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • SilverMicrowave_Saloga.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Patrick E. J. Saloga
Koautor*innen:Claudia Kästner, Andreas Thünemann
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.5 Synthese und Streuverfahren nanostrukturierter Materialien
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Microwave synthesis; SAXS; Silver nanoparticles
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Material
Veranstaltung:NanoWorkshop 2018 (Workshop on Reference Nanomaterials. Current situation and needs: development, measurement, standardization)
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:14.05.2016
Enddatum der Veranstaltung:15.05.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:16.05.2018
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.