Systematic characterization of Upconversion nanoparticles: Effect of size, microenvironment, Energy transfer, shells

  • Solid state multi-band emitters like lanthanide doped up-conversion nanoparticles (UCNPs) are promising materials for energy and biotechnologies. These materials are excitable in the near infrared (NIR) and show emission bands from UV to SWIR with excellent photostability, and long luminescence lifetimes in the µs range. The efficiency of these materials, i.e. the multiphoton absorption processes, the excitation power dependent population, and deactivation dynamics are strongly influenced by the particle size, structure, doping concentration, surface chemistry, and microenvironment. For applications UCNPs have to be optimized to meet the application relevant optical properties like the upconversion quantum yield (UC) and downshifting quantum yield (PL), luminescence lifetime and emission spectra. We investigated ß-NaYF4 NPs co-doped with Yb3+ and Er3+ in aqueous and organic media and as powder. For the later, bulk and nanomaterial is compared. For dispersed particles the influenceSolid state multi-band emitters like lanthanide doped up-conversion nanoparticles (UCNPs) are promising materials for energy and biotechnologies. These materials are excitable in the near infrared (NIR) and show emission bands from UV to SWIR with excellent photostability, and long luminescence lifetimes in the µs range. The efficiency of these materials, i.e. the multiphoton absorption processes, the excitation power dependent population, and deactivation dynamics are strongly influenced by the particle size, structure, doping concentration, surface chemistry, and microenvironment. For applications UCNPs have to be optimized to meet the application relevant optical properties like the upconversion quantum yield (UC) and downshifting quantum yield (PL), luminescence lifetime and emission spectra. We investigated ß-NaYF4 NPs co-doped with Yb3+ and Er3+ in aqueous and organic media and as powder. For the later, bulk and nanomaterial is compared. For dispersed particles the influence of surface chemistry (ligands), microenvironment (solvent) and size (10 to 43 nm) was studied. Especially for bioapplications the Förster-Resonance-Energy-Transfer (FRET) efficiency from UCNPs to organic dye molecules (rose bengal and sulforhodamine B) was optimized with respect to the UCNP size.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • UpCon2018_Wuerth-publica.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Christian WürthORCiD
Koautor*innen:Ute Resch-Genger, Stefan Fischer, Thomas Hirsch
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.2 Biophotonik
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Nanoparticle; Quenching; Upconversion
Themenfelder/Aktivitätsfelder der BAM:Umwelt
Umwelt / Sensorik
Veranstaltung:UpCon 2018
Veranstaltungsort:Valencia, Spanien
Beginndatum der Veranstaltung:02.04.2018
Enddatum der Veranstaltung:06.04.2018
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:25.04.2018
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.