Quantification of surface groups on core-shell polymer particles with optical spectroscopy

  • Polymer nanoparticles (NPs) are of increasing importance for a wide range of applications in the material and life sciences. This includes their use as carriers for dye molecules and drugs, multichromophoric reporters for signal enhancement strategies in optical assays, targeted probes in bioimaging studies, and nanosensors.[1] Application-relevant properties of such NPs include their size, morphology, colloidal stability, and ease of surface functionalization with e.g., sensor molecules and targeting ligands. Many of these features as well as the interaction of NPs with their microenvironment are closely linked to the knowledge of the chemical nature and total number of surface groups as well as the number of surface functionalities accessible for subsequent coupling reactions of differently sized ligands, biomolecules or reporter molecules. This underlines the importance of simple, robust, reliable, and validated methods, which can be employed for the characterization of a broadPolymer nanoparticles (NPs) are of increasing importance for a wide range of applications in the material and life sciences. This includes their use as carriers for dye molecules and drugs, multichromophoric reporters for signal enhancement strategies in optical assays, targeted probes in bioimaging studies, and nanosensors.[1] Application-relevant properties of such NPs include their size, morphology, colloidal stability, and ease of surface functionalization with e.g., sensor molecules and targeting ligands. Many of these features as well as the interaction of NPs with their microenvironment are closely linked to the knowledge of the chemical nature and total number of surface groups as well as the number of surface functionalities accessible for subsequent coupling reactions of differently sized ligands, biomolecules or reporter molecules. This underlines the importance of simple, robust, reliable, and validated methods, which can be employed for the characterization of a broad variety of particle systems independent of their optical properties, i.e., scattering or the presence of encoding dyes.[2] In this respect, we assessed a variety of conventional and newly developed colorimetric or fluorometric labels for the optical surface group analysis, utilizing e.g., changes in intensity and/or color for signal generation.[3] Moreover, novel cleavable and multimodal reporters were developed which consist of a reactive group, a cleavable linker, and an optically active moiety, chosen to contain also heteroatoms for straightforward method validation by elemental analysis, ICP-OES, ICP-MS or NMR. In contrast to conventional labels measured bound at the particle surface, which can favor signal distortions by scattering and encoding dyes, cleavable reporters can be detected colorimetrically or fluorometrically both attached at the particle surface and after quantitative cleavage of the linker in the transparent supernatant after particle removal e.g., by centrifugation. Here, we present first results obtained for the optical quantification of carboxylic and amino groups on a series of self-made NPs with different types of labels and compare their potential and drawbacks for surface group analysis.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • NN-Analytik bewegt-PUBLIKA.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Nithiya Nirmalananthan-Budau
Koautor*innen:Marko Moser, Daniel Geißler, Thomas Behnke, Ute Resch-Genger
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Carboxy and amin; Nanoparticle; Optical assays; Surface groups
Veranstaltung:Jubiläumskongress "Chemie bewegt" 2017
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:10.09.2017
Enddatum der Veranstaltung:14.09.2017
Bemerkung:
Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. -  Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N.
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:01.12.2017
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.