Application of LIBS for the chemical investigation of concrete infrastructure

  • The majority of the built infrastructure is made of concrete, which is a multiphase system made of cement, aggregates, water and pores (every year nearly 4 billion tons of cement are produced which is largest mass flow generated by mankind). Concrete is often used in combination with steel as reinforced concrete. Environmental influences, especially the ingress of harmful ions in combination with the ingress of water, trigger different damage processes which reduce the designed lifetime of a structure. The ingress of chlorides from de-icing salt or sea water leads to corrosion of the reinforcement. Also the carbonation of the concrete may trigger the corrosion of the reinforcement. The ingress of alkalis from de-icing salts may cause the expansion of the amorphous silica aggregates (alkali-silica reaction) through formation of a swelling gel of calcium silicate hydrate if water is present. The ingress of sulfates may cause spalling of the concrete surface due to ett-ringite formation.The majority of the built infrastructure is made of concrete, which is a multiphase system made of cement, aggregates, water and pores (every year nearly 4 billion tons of cement are produced which is largest mass flow generated by mankind). Concrete is often used in combination with steel as reinforced concrete. Environmental influences, especially the ingress of harmful ions in combination with the ingress of water, trigger different damage processes which reduce the designed lifetime of a structure. The ingress of chlorides from de-icing salt or sea water leads to corrosion of the reinforcement. Also the carbonation of the concrete may trigger the corrosion of the reinforcement. The ingress of alkalis from de-icing salts may cause the expansion of the amorphous silica aggregates (alkali-silica reaction) through formation of a swelling gel of calcium silicate hydrate if water is present. The ingress of sulfates may cause spalling of the concrete surface due to ett-ringite formation. For the standard procedure in civil engineering cores are taken, cut in slices, grinded and the obtained homogenized powder is solved in acid and investigated by standard procedures. BAM has developed the LIBS technique for the 2D evaluation of the chemical composition of concrete [1-5]. The technique is established for automated laborato-ry use with high numbers of samples to investigate transport processes of harmful species (Cl-, CO2, SO42- and alkalis) in concrete. Information about ingress depth and the quantitative values are important to estimate the remaining lifetime of the infrastructure. LIBS is a surface technique. To get information about the ingress depth, a core has to be taken and cut in the middle. The measurements are carried out at the cross section. The main advantages of LIBS are the direct measure-ment on the surface of the concrete, fast analysis (sample rate 100 Hz) with a spatial resolution of up to 100 μm, the consideration of the heterogeneity of the concrete and the possibility of automated measurements which save a lot of man-power and time. As an example the investigation of ingress profiles for standard diffusion and migration tests in civil engi-neering takes hours in comparison to just a few minutes using LIBS. At the same time a 2D-evaluation provides information about hot spots of elemental concentration which may not be found by standard methods. The state of the art of LIBS technique for applications in civil engineering will be presented, including typical results of 2D investigation of concrete in laboratory. The performance is also demonstrated by examples for on-site applications using a mobile LIBS system. The road map to standardization is presented as well.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Wilsch-BAM-EMSLIBS2017.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Gerd Wilsch
Koautor*innen:Cassian Gottlieb, Tobias Günther, Steven Millar, Nina Sankat
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:ASR; Carbonation; Chlorid; Concrete; LIBS
Veranstaltung:9th Euro-Mediterranean Symposium on LIBS / Colloquium Spectroscopicum Internationale XL
Veranstaltungsort:Pisa, Italy
Beginndatum der Veranstaltung:12.06.2017
Enddatum der Veranstaltung:16.06.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:30.11.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.