The scaled boundary finite element method to model contact acoustic nonlinearity

  • In Non-Destructive Testing, ultrasonic waves are commonly used to identify flaws and cracks. In plates, shells, pipes and other geometries guided waves can be used to test the whole structure at once. In these tests, the input and response signal can have a nonlinear relationship due to cracks. At least for higher deflections, the propagating wave excites each side of the crack in such a way that it hits the other side. This clapping generally leads to a generation of higher harmonic waves and is referred to Contact Acoustic Nonlinearity (CAN). To get a better insight into the salient physics of the effect numerical simulations are necessary. In the recent years, the Scaled Boundary Finite Element Method (SBFEM) was introduced to efficiently simulate wave propagation. The main advantage of the method is an easy grid generation process because the domain is discretized with arbitrary polygons instead of the triangles and rectangles. Another advantage is the possibility to model crackIn Non-Destructive Testing, ultrasonic waves are commonly used to identify flaws and cracks. In plates, shells, pipes and other geometries guided waves can be used to test the whole structure at once. In these tests, the input and response signal can have a nonlinear relationship due to cracks. At least for higher deflections, the propagating wave excites each side of the crack in such a way that it hits the other side. This clapping generally leads to a generation of higher harmonic waves and is referred to Contact Acoustic Nonlinearity (CAN). To get a better insight into the salient physics of the effect numerical simulations are necessary. In the recent years, the Scaled Boundary Finite Element Method (SBFEM) was introduced to efficiently simulate wave propagation. The main advantage of the method is an easy grid generation process because the domain is discretized with arbitrary polygons instead of the triangles and rectangles. Another advantage is the possibility to model crack tips elegantly without additional workload. The SBFEM approach is still related to the Finite Element Method and uses similar techniques. The method is very efficient using high-order-spectral elements. In this contribution, we present a short introduction into the basics of SBFEM formulation of the dynamic elastic wave equation. The SBFEM is then extended for modeling the non-linear behavior of crack clapping. Different approaches with increasing complexity are presented and assessed with respect to numerical stability.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • ICTCA2017_JBulling2.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Jannis BullingORCiD
Koautor*innen:Jens Prager
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Contact acoustic nonlinearity; Scaled boundary finite element method
Veranstaltung:ICTCA 2017
Veranstaltungsort:Wien, Austria
Beginndatum der Veranstaltung:31.07.2017
Enddatum der Veranstaltung:03.08.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:11.09.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.