Sensitivity analysis of residual stresses in composite pressure vessels via modal analysis

  • Due to high specific stiffness and strength properties, fibre reinforced plastics are used more and more often for the construction of pressure vessels. Within a recent research project run by the Federal Institute for Materials Research and Testing (BAM), aging process of composite pressure vessels is investigated in order to be able to give more accurate lifetime predictions in the future. Focus is set on type III pressure vessels consisting of an aluminium tank which is fully wrapped with carbon fibre reinforced plastics. In order to increase high-cycle fatigue, residual stresses are induced into the pressure vessel during manufacturing process. In particular, residual compressive stresses within the inner aluminium layer have been defined as a main parameter affecting fatigue strength. The aim is to identify and evaluate residual stresses of the pressure vessel by analysing its modal parameters. Through the set-up of a finite-element model potential capability andDue to high specific stiffness and strength properties, fibre reinforced plastics are used more and more often for the construction of pressure vessels. Within a recent research project run by the Federal Institute for Materials Research and Testing (BAM), aging process of composite pressure vessels is investigated in order to be able to give more accurate lifetime predictions in the future. Focus is set on type III pressure vessels consisting of an aluminium tank which is fully wrapped with carbon fibre reinforced plastics. In order to increase high-cycle fatigue, residual stresses are induced into the pressure vessel during manufacturing process. In particular, residual compressive stresses within the inner aluminium layer have been defined as a main parameter affecting fatigue strength. The aim is to identify and evaluate residual stresses of the pressure vessel by analysing its modal parameters. Through the set-up of a finite-element model potential capability and validity for the use of modal analysis is proven and evaluated, considering influences resulting from manufacturing deviations, too. In the following, a number of stress sensitive modes are defined. Based on these preliminary numerical investigations, a test bench is set up in order to measure pressure vessels via an experimental modal analysis. A final critical evaluation regarding the accuracy of the modal analysis is made by comparing experimental results with data obtained through simulations.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • INOISE_V9pdf.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Sebastian John
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Composite pressure vessel; Modal analysis
Veranstaltung:INTER-NOISE 2017 - 46th International Congress and Exposition on Noise Control Engineering
Veranstaltungsort:Hong Kong, People's Republic of China
Beginndatum der Veranstaltung:27.08.2017
Enddatum der Veranstaltung:30.08.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:06.09.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.