Kinetic model of stimulated emission created by resonance pumping of aluminum laser-induced plasma

  • Stimulated emission observed experimentally in an aluminum laser induced plasma is modeled via a kinetic approach. The simulated emission at several cascade transitions is created by a pump laser guided through the plasma at several microseconds after its creation and tuned in resonance with the strong 3s²3p-3s²4s transition at 266 nm. A two-dimensional space-time collisional radiative plasma model explains the creation of the Population inversion and lasing at wavelengths of 2100 nm and 396.1 nm. The population inversion for lasing at 2100 nm is created by depopulation of the ground 3s²3p state and population of the 3s²5s state via the absorption of the resonant radiation at 266 nm. The population inversion for lasing at 396.1 nm occurs during the laser pulse via the decay of the population of the pumped 3s²5s state to the excited 3s²4s state via cascade transitions driven optically and by collisions. In particular, efficient are the mixing transitions between neighboring statesStimulated emission observed experimentally in an aluminum laser induced plasma is modeled via a kinetic approach. The simulated emission at several cascade transitions is created by a pump laser guided through the plasma at several microseconds after its creation and tuned in resonance with the strong 3s²3p-3s²4s transition at 266 nm. A two-dimensional space-time collisional radiative plasma model explains the creation of the Population inversion and lasing at wavelengths of 2100 nm and 396.1 nm. The population inversion for lasing at 2100 nm is created by depopulation of the ground 3s²3p state and population of the 3s²5s state via the absorption of the resonant radiation at 266 nm. The population inversion for lasing at 396.1 nm occurs during the laser pulse via the decay of the population of the pumped 3s²5s state to the excited 3s²4s state via cascade transitions driven optically and by collisions. In particular, efficient are the mixing transitions between neighboring states separated by small gaps on the order of kT at Plasma temperatures of 5000–10 000 K. The model predicts that the population inversion and corresponding gain may reach high values even at very moderate pump energy of several lJ per pulse. The efficiency of lasing at 2100 nm and 396.1 nm is estimated to be ~3% and 0.05%, correspondingly with respect to the pump laser intensity. The gain for lasing at 396.1 nm can reach as high as ~40 cm⁻¹. The polarization effect that the pump radiation at 266 nm imposes on the stimulated emission at 396.1 nm is discussed. The calculated results are favorably compared to experimental data.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Lasing Al plasma J Appl Phys 2017.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Igor B. GornushkinORCiD, Alexander Ya. Kazakov
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of Applied Physics
Jahr der Erstveröffentlichung:2017
Jahrgang/Band:121
Ausgabe/Heft:21
Erste Seite:213303-1
Letzte Seite:213303-11
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:LIBS; Laser induced plasma; Lasers; Plasma diagnostics; Plasma modeling
DOI:10.1063/1.4984912
ISSN:0021-8979
ISSN:1089-7550
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:22.06.2017
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:25.08.2017
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.