Operation and optimal control of multiphase systems – Hydroformylation in microemulsions on the mini-plant scale

  • develops new process concepts, involving innovative tuneable solvent systems to enable rather difficult or inapplicable synthesis paths. One possible concept is the hydroformylation of long-chained alkenes in microemulsions. For this, a modular mixer-settler concept was proposed, combining high reaction rates and efficient catalyst recycling via the application of technical grade surfactants. The feasibility of such a concept is evaluated in a fully automated, modular mini-plant system within which the characteristics of such a multiphase system pose several obstacles in operating this mini-plant. Maintaining a stable phase separation for efficient product separation and catalyst recycling is complicated by small and highly dynamic operation windows as well as poor measurability of component concentrations in the liquid phases. In this contribution, a model-based strategy is presented to enable concentration tracking and phase state control within dynamic mini-plant experiments. Ramandevelops new process concepts, involving innovative tuneable solvent systems to enable rather difficult or inapplicable synthesis paths. One possible concept is the hydroformylation of long-chained alkenes in microemulsions. For this, a modular mixer-settler concept was proposed, combining high reaction rates and efficient catalyst recycling via the application of technical grade surfactants. The feasibility of such a concept is evaluated in a fully automated, modular mini-plant system within which the characteristics of such a multiphase system pose several obstacles in operating this mini-plant. Maintaining a stable phase separation for efficient product separation and catalyst recycling is complicated by small and highly dynamic operation windows as well as poor measurability of component concentrations in the liquid phases. In this contribution, a model-based strategy is presented to enable concentration tracking and phase state control within dynamic mini-plant experiments. Raman spectroscopy is used as an advanced process analytical tools, which allows for online in-situ tracking of concentrations. Combined with optical and conductivity analysis optimal plant trajectories can be calculated, solving a dynamic optimization problem under uncertainty. Applying these, a stable reaction yield of 40 % was achieved, combined with an oil phase purity of 99,8 % (total amount of oily components in the oil phase) and a catalyst leaching below 0.1 ppm.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2017_05_10_Poster_EuroPACT.pdf
    eng
  • BoA_EuroPACT_2017_titel.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:M. Illner
Koautor*innen:Klas Meyer, Andrea Paul, E. Esche, Michael Maiwald, J.-U. Repke
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:EuroPACT; Hydroformylation; InPROMPT; Mini-plant; Process analytical technology; Process control; Process monitoring
Veranstaltung:4th European Conference on Process Analytics and Control Technology (EuroPACT 2017)
Veranstaltungsort:Potsdam, Germany
Beginndatum der Veranstaltung:10.05.2017
Enddatum der Veranstaltung:12.05.2017
URL:http://dechema.de/en/europact17.html
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:15.05.2017
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.