Tribological Tayloring of Ceramic Composites

  • With respect to their excellent material properties ceramics are of interest as candidate materials for tribological applications. The friction and wear behaviour of ceramics is often superior to that of metallic materials. Furthermore, an essential improvement of tribological performance will be possible by tailoring of ceramics in the process of powder preparation and sintering technique. Silicon Carbide (SiC) shows interesting friction and wear behaviour at room temperature, even under unlubricated running conditions but is very sensitive against effects of environmental humidity and shows high friction and high wear in the absence of water vapour. The tribological performance of SiC can be improved considerably by adding substantial amounts of TiC and TiB2 to the microstructure thus creating ceramic particulate composite materials. Various composites in the quasi ternary system SiC-TiC-TiB2 were prepared by a ceramic manufacturing process including sintering temperatures up to 2180With respect to their excellent material properties ceramics are of interest as candidate materials for tribological applications. The friction and wear behaviour of ceramics is often superior to that of metallic materials. Furthermore, an essential improvement of tribological performance will be possible by tailoring of ceramics in the process of powder preparation and sintering technique. Silicon Carbide (SiC) shows interesting friction and wear behaviour at room temperature, even under unlubricated running conditions but is very sensitive against effects of environmental humidity and shows high friction and high wear in the absence of water vapour. The tribological performance of SiC can be improved considerably by adding substantial amounts of TiC and TiB2 to the microstructure thus creating ceramic particulate composite materials. Various composites in the quasi ternary system SiC-TiC-TiB2 were prepared by a ceramic manufacturing process including sintering temperatures up to 2180 °C. Comparative tribo tests were performed under unlubricated oscillating sliding motion in dry, normal, and moist air and under water lubrication with SiC balls and Al2O3 balls as counter bodies. The friction is affected by the relative humidity (RH) but barely at all by the composition of the composites. The wear resistance of the composites was found to be improved considerably by addition of TiB2 in the range from 20 to 60 %. The highest wear resistance of the system wear was found when Al2O3 was used as counter body material.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Rolf WäscheORCiD, Dieter Klaffke, Rasim Yarim, Erich Santner
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Materialwissenschaft und Werkstofftechnik = Materials science and engineering technology
Jahr der Erstveröffentlichung:2003
Verlag:Wiley-VCH Verl.
Verlagsort:Weinheim
Jahrgang/Band:34
Ausgabe/Heft:10/11
Erste Seite:1008
Letzte Seite:1013
DOI:10.1002/mawe.200300688
ISSN:0933-5137
ISSN:1521-4052
Verfügbarkeit des Dokuments:Physisches Exemplar in der Bibliothek der BAM vorhanden ("Hardcopy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:19.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:25.02.2004
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.