Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-1295

Zur Bewertung der Kaltrisssicherheit von Schweißverbindungen aus hochfesten Feinkornbaustählen

  • Während sich durch den Einsatz niedriglegierter hochfester schweißgeeigneter Feinkornbaustähle mit Streckgrenzen über 690 MPa in vielen Bereichen der stahlverarbeitenden Industrie einerseits ökonomische Vorteile ergeben, stellt die schweißtechnische Verarbeitung dieser Werkstoffe mit steigender Festigkeitsklasse eine große Herausforderung dar, da die bei der Herstellung durch eine gezielte Wärmebehandlung eingestellten günstigen Eigenschaften des Materials durch weitere thermische bzw. thermomechanische Zyklen beim Schweißen nachteilig beeinflusst werden. In Verbindung mit einem Wasserstoffeintrag beim Schweißen steigt die Gefahr einer wasserstoffunterstützten Kaltrissbildung. Diese, lange Zeit aufgrund der Erfahrungen an niederfesten Feinkornbaustählen als beherrschbar angesehene Art der Rissbildung, gewann, wie aktuelle Schadenfälle zeigen, in den letzten Jahren zunehmend an Bedeutung. Besonders die Tatsache, dass die vorhandenen Regelwerke zur schweißtechnischen Fertigung denWährend sich durch den Einsatz niedriglegierter hochfester schweißgeeigneter Feinkornbaustähle mit Streckgrenzen über 690 MPa in vielen Bereichen der stahlverarbeitenden Industrie einerseits ökonomische Vorteile ergeben, stellt die schweißtechnische Verarbeitung dieser Werkstoffe mit steigender Festigkeitsklasse eine große Herausforderung dar, da die bei der Herstellung durch eine gezielte Wärmebehandlung eingestellten günstigen Eigenschaften des Materials durch weitere thermische bzw. thermomechanische Zyklen beim Schweißen nachteilig beeinflusst werden. In Verbindung mit einem Wasserstoffeintrag beim Schweißen steigt die Gefahr einer wasserstoffunterstützten Kaltrissbildung. Diese, lange Zeit aufgrund der Erfahrungen an niederfesten Feinkornbaustählen als beherrschbar angesehene Art der Rissbildung, gewann, wie aktuelle Schadenfälle zeigen, in den letzten Jahren zunehmend an Bedeutung. Besonders die Tatsache, dass die vorhandenen Regelwerke zur schweißtechnischen Fertigung den Festigkeitsbereich der eingesetzten Feinkornbaustähle mit Streckgrenzen über 690 MPa nicht abdecken, stellt vor diesem Hintergrund ein sicherheitsrelevantes Problem dar. Die im Rahmen dieser Arbeit an den hochfesten Feinkornbaustählen S690Q und S1100QL ermittelten wasserstoffabhängigen mechanischen Kennwerte weisen auf ein erheblich größeres Kaltrissrisiko dieser hochfesten Varianten gegenüber Feinkornbaustählen mit niedrigerer Festigkeit hin. Aus den Ergebnissen umfangreicher Zugversuche mit wasserstoffbeladenen Proben konnte abgeleitet werden, dass sich als Parameter zur Beschreibung der Kaltrissempfindlichkeit im Gegensatz zu Festigkeitswerten die wahre Bruchdehnung am besten eignet, da sie für alle untersuchten Gefügezustände die Effekte des Wasserstoffs über den gesamten Wasserstoffkonzentrationsbereich am signifikantesten reflektiert. Dieser Parameter ist als Risskriterium nutzbar und wird in Form mathematischer Gleichungen für zwei repräsentative Werkstoff/Zusatzwerkstoffkombinationen der Festigkeitsklassen S690 und S1100 zur Verfügung gestellt. Die Übertragbarkeit des identifizierten Parameters auf Laborproben wird nachgewiesen und erscheint auf reale Bauteile möglich, wenn die lokale Dehnung an rissgefährdeten Bereichen der entsprechenden Konstruktion bestimmt werden kann. Auf Grundlage der bereits für die Evaluation der wasserstoffunterstützten Spannungsrisskorrosion erfolgreich eingesetzten Time-Strain-Fracture Diagramme wird diese Vorgehensweise anhand der Werkstoff/Zusatzwerkstoffkobination S1100QL/UnionX96 unter Anwendung des IRC-Tests gezeigt und führte vorerst zu qualitativen Aussagen bezüglich des Kaltrissrisikos in Abhängigkeit vom Sinspanngrad. Die lokale Dehnung im Schweißgut wird dabei mittels numerischer Simulation bestimmt und den experimentell bestimmten kritischen Dehnungswerten gegenübergestellt.zeige mehrzeige weniger
  • Whereas the application of weldable high-strength low-alloyed fine-grained structural steels with yield strengths exceeding 690 MPa offers economic advantages in many sectors of the steels processing industry, welding fabrication presents a major challenge with increasing strength grade of these materials, since their favourable properties obtained by deliberate heat treatment during production are adversely affected by further thermal and thermomechanical cycles during welding. Hydrogen entry during welding involves an increasing risk of hydrogen-assisted cold cracking. This type of cracking, which has long been regarded as controllable based on the experience with low-strength fine-grained structural steels, assumes greater importance in recent years as current damage cases attest. Particularly the fact that the existing codes devoted to welding fabrication do not cover the strength range of the applied fine-grained structural steels with yield strengths exceeding 690 MPa constitutesWhereas the application of weldable high-strength low-alloyed fine-grained structural steels with yield strengths exceeding 690 MPa offers economic advantages in many sectors of the steels processing industry, welding fabrication presents a major challenge with increasing strength grade of these materials, since their favourable properties obtained by deliberate heat treatment during production are adversely affected by further thermal and thermomechanical cycles during welding. Hydrogen entry during welding involves an increasing risk of hydrogen-assisted cold cracking. This type of cracking, which has long been regarded as controllable based on the experience with low-strength fine-grained structural steels, assumes greater importance in recent years as current damage cases attest. Particularly the fact that the existing codes devoted to welding fabrication do not cover the strength range of the applied fine-grained structural steels with yield strengths exceeding 690 MPa constitutes a safety-relevant problem against this background. The hydrogen-dependent mechanical characteristics determined within the scope of this study for the high-strength fine-grained structural steels S690Q and S1100QL point to a considerably higher cold cracking risk of these high-strength variants compared to lowstrength fine-grained structural steels. From the results of extensive tensile tests using hydrogen-charged specimens it was deduced that the true elongation, in contrast to strength values, is best suitable as parameter for describing the cold cracking susceptibility, since it most significantly reflects the effects of hydrogen over the entire hydrogen concentration range for all investigated microstructure conditions. This parameter can be used as a crack criterion and is provided in the form of mathematical equations for two representative material/filler material combinations of the strength grades S690 and S1100. The transferability of the identified parameter to laboratory specimens has been proved. Its transferability to real components seems possible if the local strain in crack-prone areas of the respective structure can be determined. Based on the time-strain-fracture diagrams which have already been successfully used for the evaluation of hydrogen-assisted stress corrosion cracking, this procedure is demonstrated using the material/filler material combination S1100QL/UnionX96 in the IRC-Tests. The local weld metal strain is determined by numerical simulation and compared with the critical strain values obtained from the experiments. The results allow first qualitative statements to be made regarding the risk of cold cracking depending on the restraint intensity.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Peter Zimmer
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM Dissertationsreihe (29)
Sprache:Deutsch
Jahr der Erstveröffentlichung:2007
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Helmut-Schmidt-Universität - Universität der Bundeswehr Hamburg, Fachbereich Maschinenbau
Gutachter*innen:H. Hoffmeister, Thomas Böllinghaus, H. Herold
Datum der Abschlussprüfung:10.07.2007
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Jahrgang/Band:29
Erste Seite:1
Letzte Seite:169
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Industrielle Fertigung / Industrielle Fertigung
Freie Schlagwörter:Feinkornbaustähle; Kaltrissprüfverfahren; Schweißen; Wasserstoff; numerische Simulation
URN:urn:nbn:de:kobv:b43-1295
ISSN:1613-4249
ISBN:978-3-9811655-8-6
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoAllgemeines Deutsches Urheberrecht
Datum der Freischaltung:23.01.2015
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.