• Treffer 1 von 26
Zurück zur Trefferliste

Material property predictions by incorporating quantum chemical bonding information

  • Interactions between constituent atoms in crystalline materials have been shown to influence the properties of materials, such as elasticity, ionic and thermal conductivity, etc.[1–3] These interactions between constituent atoms, often quantified as bond strengths, can be extracted from crystalline materials using density-based[4], energy-based[5], and orbital-based methods. LOBSTER[6] is a software that relies on the orbital-based method to extract such bonding information by projecting the plane wave-based wave functions of modern density functional theory computations (DFT) onto a local atomic orbital basis. To garner a better understanding of how this bonding information relates to material properties on a larger scale, machine learning seems an obvious choice. However, for such data-driven studies, large quantities of data that are systematically generated, validated, and post-processed (feature engineering) in a form suitable for input in state-of-the-art ML models are oftenInteractions between constituent atoms in crystalline materials have been shown to influence the properties of materials, such as elasticity, ionic and thermal conductivity, etc.[1–3] These interactions between constituent atoms, often quantified as bond strengths, can be extracted from crystalline materials using density-based[4], energy-based[5], and orbital-based methods. LOBSTER[6] is a software that relies on the orbital-based method to extract such bonding information by projecting the plane wave-based wave functions of modern density functional theory computations (DFT) onto a local atomic orbital basis. To garner a better understanding of how this bonding information relates to material properties on a larger scale, machine learning seems an obvious choice. However, for such data-driven studies, large quantities of data that are systematically generated, validated, and post-processed (feature engineering) in a form suitable for input in state-of-the-art ML models are often needed.[7] Here, we first present a workflow implemented in atomate2[8] that can generate such bonding-related data using the LOBSTER program with minimal user input and a post-processing tool, LobsterPy[9], which can summarize and engineer features that could be directly used as input for ML studies. Lastly, we demonstrate the utility of these newly generated features by building a simple machine-learned model to predict harmonic phonon properties using the bonding dataset[10] generated by us for 1500 materials. We find a clear correlation between the bonding information and the phonon property.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • POSTER_STC_A0.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Aakash Ashok NaikORCiD
Koautor*innen:Katharina UeltzenORCiD, Christina ErturalORCiD, Adam J JacksonORCiD, Janine GeorgeORCiD
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Bonding analysis; Feature engineering; Machine learning
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialdesign
Veranstaltung:STC 2024
Veranstaltungsort:Braunschweig, Germany
Beginndatum der Veranstaltung:02.09.2024
Enddatum der Veranstaltung:06.09.2024
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:27.09.2024
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.