• Treffer 67 von 18077
Zurück zur Trefferliste

Interlayer spacing-controlled carnation flower-like microstructure of nickel-manganese layered double hydroxide for enhancing hybrid supercapacitor performance

  • Energy harvested from intermittent sources can be stored in supercapacitors for high-power delivery with long cycling stability. Binary layered double hydroxide (LDH) materials have great potential for hybrid supercapacitor applications owing to their mixed and tunable charges and layered structure. This study presents carnation flower-like, 3D micro-structured NiMn-LDH prepared by a facile single-step hydrothermal synthesis using hexamethylenetetramine to produce hydroxides. The 3D structure was assembled from ultrathin 2D NiMn-LDH nanosheets, and the largest interlayer spacing was obtained by optimizing synthesis parameters, such as Ni:Mn molar ratio and reaction temperature, ensuring a fast diffusion and thus the best energy storage performance. The optimized NiMn-LDH electrode delivered a high specific capacity of 612 C/g with an excellent rate capability of 67% at 20 A/g in a three-electrode test. An asymmetric device assembled using NiMn-LDH and reduced graphene oxide as positiveEnergy harvested from intermittent sources can be stored in supercapacitors for high-power delivery with long cycling stability. Binary layered double hydroxide (LDH) materials have great potential for hybrid supercapacitor applications owing to their mixed and tunable charges and layered structure. This study presents carnation flower-like, 3D micro-structured NiMn-LDH prepared by a facile single-step hydrothermal synthesis using hexamethylenetetramine to produce hydroxides. The 3D structure was assembled from ultrathin 2D NiMn-LDH nanosheets, and the largest interlayer spacing was obtained by optimizing synthesis parameters, such as Ni:Mn molar ratio and reaction temperature, ensuring a fast diffusion and thus the best energy storage performance. The optimized NiMn-LDH electrode delivered a high specific capacity of 612 C/g with an excellent rate capability of 67% at 20 A/g in a three-electrode test. An asymmetric device assembled using NiMn-LDH and reduced graphene oxide as positive and negative electrodes provided a high energy density of 60.0 Wh/kg and power density of 17.7 kW/kg with 90.4% capacity retention after 10,000 charge–discharge cycles. This superior result highlights the potential industrial applications, such as portable electronics and trams.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 1-s2.0-S1226086X23008250-main.pdf
    eng
  • 1-s2.0-S1226086X23008250-mmc1.pdf
    eng

    Supplement

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:A. Eshetie Kidie, G. Dhakal, S. Sahoo, Dirk TumaORCiD, J.-J. Shim
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of Industrial and Engineering Chemistry
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.4 Prozessanalytik
Verlag:Elsevier BV
Verlagsort:Amsterdam
Jahrgang/Band:133
Erste Seite:550
Letzte Seite:560
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Hydrothermal synthesis; Interlayer spacing; Supercapacitor
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Elektrische Energiespeicher und -umwandlung
Material
Material / Materialdesign
DOI:10.1016/j.jiec.2023.12.032
ISSN:1226-086X
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:02.07.2024
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:02.07.2024
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.