Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 10 von 173
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-447331

Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM

  • For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or beforeFor almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Oded SobolORCiD
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM Dissertationsreihe (160)
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):BAM-Dissertationsreihe
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.1 Oberflächen- und Dünnschichtanalyse
9 Komponentensicherheit
9 Komponentensicherheit / 9.0 Abteilungsleitung und andere
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Otto-von-Guericke-Universität Magdeburg, Fakultät für Maschinenbau
Gutachter*innen:Thomas Böllinghaus, Wolfgang UngerORCiD, Dan Eliezer
Datum der Abschlussprüfung:14.02.2018
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Jahrgang/Band:160
Erste Seite:I
Letzte Seite:180
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Data fusion; Duplex stainless steels; Hydrogen assisted cracking; Time-of-Flight secondary ion mass spectrometry
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Energie
Material
Material / Degradation von Werkstoffen
URN:urn:nbn:de:kobv:b43-447331
ISSN:1613-4249
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
Datum der Freischaltung:20.04.2018
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.