Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 17 von 173
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-374027

Hydrogen Diffusion and Effect on Degradation in Welded Microstructures of Creep-resistant Low-alloyed Steels

  • Low-alloyed heat-resistant steels have a fundamental contribution to the currently applied steel grades in pressurized and temperature loaded components like membrane walls(water walls)or pressure vessels. Here, the main advantages of the low-alloy concept can be used in terms of superior high temperature mechanical properties, workability and decreased amounts of expensive alloy elements. The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO2 emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service -Low-alloyed heat-resistant steels have a fundamental contribution to the currently applied steel grades in pressurized and temperature loaded components like membrane walls(water walls)or pressure vessels. Here, the main advantages of the low-alloy concept can be used in terms of superior high temperature mechanical properties, workability and decreased amounts of expensive alloy elements. The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO2 emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a “critical” hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tubeto-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized with the permeation technique at room temperature and at elevated temperature ranges up to 400°C - It was investigated by interpreting the hydrogen effusion behavior with carrier gas hot extraction technique (CGHE). For realistic determination of the hydrogen diffusion coefficients, an improved method was developed encompassing accelerated specimen heating and hydrogen determination via mass spectrometer (MS). Simultaneously, the corresponding temperature dependent trapped and total hydrogen concentrations were determined. The determined experimental results showed increased susceptibility to the hydrogen affected degradation of the HAZ compared to the base material, which is independent of the investigated alloy composition. In particular, the martensitic coarse grain HAZ is the most susceptible microstructure to hydrogen-affected degradation. The results of the tensile tests allowed the definition of consistent microstructure specific failure criteria (envelope curves) versus quantified hydrogen concentrations for the reactor pressure vessel 16MND5 steel (20MnMoNi-5-5) and the creep-resistant T24 steel (7CrMoVTiB10-10). The procedure of quantifying hydrogen concentrations in HAZ microstructures is novel and supports a new method of analysis for hydrogen degradation effects. Further investigations with the T22 steel (10CrMo9-10), as compared to the creep-resistant T24 steel (7CrMoVTiB10-10), confirmed the beneficial effect of Vanadium as an alloying element to improve the resistance to degradation. In general, Mn-Mo-Ni base material grades show a higher resistance compared to Cr-Mo steels that do not include Vanadium alloying. The investigations showed the decreased diffusion coefficient of the HAZ microstructure compared to the base material microstructure. This is caused by the stronger trapping effects that are present which simultaneously increase the hydrogen solubility as well. In general, trapping effects above 100°C are negligible. It is noted that after testing the T24 grade, these trapping effects were observed above 100°C and must be considered. At elevated temperatures, the calculated hydrogen diffusion coefficients are sometimes greater than those in literature. This is primarily due to the unique applied specimen heating procedure resulting in a varied hydrogen effusion from the specimen. The significance of the obtained results can be characterized in three perspectives. First, the direct comparison of the degradation was possible in terms of microstructure-specific hydrogen effects on the mechanical properties. Second, consistent failure criteria were established to quantify degradation vs. the hydrogen concentration. Third, the determination of more accurate hydrogen diffusion coefficients is now available. From a scientific point of view, important contributions were made to further interpret the hydrogen effects on the macroscopic mechanical properties, with respect to the alloy composition and the microstructure. From a procedural standpoint, the mentioned deviation in the elevated temperature diffusion coefficients can be caused by the calculation method. This can be an explanation for the reported data scatter in the references. In terms of an economic view, the presented experimental results contribute to a safe and reliable weld workability of the steel grades. Thus, the identified temperature levels of hydrogen trapping can be applied in the definition of minimum preheat, interpass or postheat temperatures. In addition, recommendations for suitable dehydrogenation heat treatment (DHT) procedures, with accurate temperature values and holding times, can be derived from these results. In the future, the application of the mechanical and diffusion data is intended to support numerical analysis methods to provide an improved prediction of hydrogen effects on material degradation in weld microstructures.zeige mehrzeige weniger
  • Niedriglegierte warmfeste Mn-Mo-Ni und Cr-Mo-V Stähle bilden einen wesentlichen Beitrag gegenwärtig eingesetzter Werkstoffe für druck- und temperaturführende Komponenten im Kraftwerksbau. Dies sind beispielsweise Kesselkomponenten wie Membranwände und Druckbehälter. Dabei kommen die Hauptmerkmale dieser Werkstoffgruppe (sehr gute mechanische Hochtemperatureigenschaften, Verarbeitbarkeit und niedrige Legierungskosten) zum Tragen. Die weitere Erhöhung des thermischen Wirkungsgrades ist dabei das wichtigste Ziel, der Werkstoffauswahl für die nähere Zukunft, unabhängig vom Kraftwerkskonzept. Dies trifft jedoch im Besonderen bei fossil-befeuerten Kraftwerken im Rahmen der notwendigen Reduzierung der CO2 Emissionen zu. Die schweißtechnische Komponentenfertigung ist dabei das maßgebliche Fertigungsverfahren. Das Einbringen der Schweißwärme bedingt dabei metallurgische und Gefügeveränderungen in der wärmebeeinflussten Zone des Grundwerkstoffes (WEZ) als auch imNiedriglegierte warmfeste Mn-Mo-Ni und Cr-Mo-V Stähle bilden einen wesentlichen Beitrag gegenwärtig eingesetzter Werkstoffe für druck- und temperaturführende Komponenten im Kraftwerksbau. Dies sind beispielsweise Kesselkomponenten wie Membranwände und Druckbehälter. Dabei kommen die Hauptmerkmale dieser Werkstoffgruppe (sehr gute mechanische Hochtemperatureigenschaften, Verarbeitbarkeit und niedrige Legierungskosten) zum Tragen. Die weitere Erhöhung des thermischen Wirkungsgrades ist dabei das wichtigste Ziel, der Werkstoffauswahl für die nähere Zukunft, unabhängig vom Kraftwerkskonzept. Dies trifft jedoch im Besonderen bei fossil-befeuerten Kraftwerken im Rahmen der notwendigen Reduzierung der CO2 Emissionen zu. Die schweißtechnische Komponentenfertigung ist dabei das maßgebliche Fertigungsverfahren. Das Einbringen der Schweißwärme bedingt dabei metallurgische und Gefügeveränderungen in der wärmebeeinflussten Zone des Grundwerkstoffes (WEZ) als auch im niedergeschmolzenen Schweißgut. Die Schweißverbindung kann dabei zusätzlich während oder nach dem Schweißen Wasserstoff aufnehmen. Wasserstoff hat dabei eine degradierende Wirkung auf die mechanischen Eigenschaften, die sich im Worst-Case als wasserstoffunterstützte Kaltrisse zeigen, dies vor allem auch zeitverzögert (delayed cracking) durch die temperaturabhängige Wasserstoffdiffusion. Dabei zeigt jede Schweißmikrostruktur spezifische Wasserstoffdiffusions- und Lösungscharakteristika. Die Degradation ist daher als eine Kombination sich gegenseitig beeinflussender Faktoren aus lokaler Wasserstoffkonzentration, Mikrogefüge und mechanischer Beanspruchung zu sehen. Wie aktuelle Schadensfälle in der jüngeren Vergangenheit belegten (Rissbildung bei Schweißnähten an T24 Rohr-Rohr-Verbindungen), ist Wasserstoff dabei eine potentiell zu berücksichtigende Schadensursache. Zur weiterführenden Früherkennung möglicher Schäden, ist es daher notwendig, den gefügespezifischen Wasserstoffeffekt in Schweißnähten an niedriglegierten Stählen festzustellen und zu bewerten. Die Interdependenz der mechanischen Beanspruchung und des Verbleibens einer potentiell degradierenden Wasserstoffkonzentration muss dabei für jedes Gefüge separiert werden. Daher wurden für die Charakterisierung der mechanischen Eigenschaften gefügespezifische Untersuchungen an wasserstoffbeladenen Zugproben aus Grundwerkstoffen und thermisch simulierten WEZ Gefügen untersucht. Das Diffusionsverhalten wurde mit der elektrochemischen Permeationsmethode bei Raumtemperatur und über die Interpretation des Wasserstoffeffusions-verhaltens mittels Trägergasheißextraktion bei erhöhten Temperaturen bis 400°C untersucht. Zur realistischen Abbildung des Diffusionsverhaltens, wurde dabei eine optimierte Prozedur aus Probenaufheizung und Wasserstoffeffusion entwickelt. Diese wurde zusätzlich auf ein Wasserstoffmessgerät mit gekoppeltem Massen-spektrometer (MS) übertragen. Gleichzeitig, wurden die korrespondierende getrappte, sowie die Gesamtwasserstoff-konzentration bestimmt. Die Ergebnisse zeigten, dass die WEZ eine generell erhöhte Anfälligkeit für die Degradation besitzt (im Gegensatz zum Grundwerk-stoff), unabhängig von der verwendeten Legierungsroute. Dabei nimmt die martensitische Grobkornzone die Stellung als anfälligste Mikrostruktur ein. Aus den gewonnenen Daten, konnten erstmals durchgängige gefügespezifische Kriterien(Hüllkurven) für das Versagen mit quantifizierbaren Wasserstoffkonzentrationen generiert werden. Dazu erfolgten Untersuchungen an Mn-Mo-Ni legierten Stählen (16MND5 und 20MND5 / 20MnMoNi5-5) sowie an kriechfesten Stählen T24 (7CrMoVTiB1010) und T22 (10CrMo9-10). Generell, zeigten Mn-Mo-Ni Grundwerk-stoffe eine bessere Beständigkeit als Cr-Mo(-V) Stähle. Im Fall des Cr-Mo-V Legierungskonzeptes, konnte zusätzlich die positive Wirkung von Vanadium als Legierungselement zur Erhöhung der Beständigkeit gegenüber einer Degradation bestätigt werden. Die Untersuchungen des Diffusions- und Lösungs-vermögens zeigten, dass die WEZ generell niedrigere Diffusionskoeffizienten besitzt als der Grundwerk-stoff. Dies wird durch stärkeres Trapping des Wasserstoffs beeinflusst und steigert dabei die Lösungs-fähigkeit der Mikrostruktur. Oberhalb von 100°C konnte dabei kein nennenswertes Trapping festgestellt werden, außer im Fall des T24 infolge der Zulegierung von Vanadium. Unterhalb von 100°C, zeigte sich ein deutlicher Abfall der Diffusion infolge des weiter ansteigenden Trappings. Für den betrachteten Temperatur-bereich wurden dabei effektive Wasserstoffdiffusions-koeffizienten berechnet, die zum Teil höher liegen, im Vergleich zu Literaturwerten. Dies liegt zum großen Teil in der optimierten Aufheizprozedur der Proben begründet und, daran gekoppelt, der beschleunigten Wasserstoffeffusion. Die weiterführende Bedeutung der Ergebnisse liegt in drei Bereichen begründet. Erstens, besteht jetzt die Möglichkeit der quantifizierbaren Vergleichbarkeit des gefüge-spezifischen Wasserstoff-einflusses auf die Degradation. Zweitens, wurden aus den experimentellen Daten, Kriterien für das Versagen für der spezifischen Schweißnahtgefüge abgeleitet. Drittens, stehen realistischere Diffusionskoeffizienten für eine Vielzahl von Schweißnahtgefügen zur Verfügung. Aus wissenschaftlicher Sicht ergeben sich wichtige Beiträge zur Interpretation des Wasserstoffeinflusses auf die makroskopischen mechanischen Eigenschaften hinsichtlich der Legierung bzw. Phasenzusammensetzung, wie oben angeführt. Weiterhin konnte gezeigt werden, dass Berechnungsalgorithmen in Kombination mit bestimmten experimentellen Randbedingungen, großen Einfluss auf die effektiven Wasserstoffdiffusions-koeffizienten haben. Dies kann speziell bei erhöhten Temperaturen zu Abweichungen führen, die einen weiteren Ansatz zur Erklärung (der in der Literatur) genannten Streubänder ergeben. Aus ökonomischer Sicht leisten die präsentierten Ergebnisse Beiträge zur sicheren und zuverlässigen Verarbeitung der Werkstoffe. So können anhand der identifizierten Temperaturstufen des Wasserstofftrappings Mindestvorwärm-, Zwischenlagen- bzw. Nachwärmtemperaturen für das Wasserstoffarmglühen identifiziert werden. Die Verwendung der Diffusionskoeffizienten ermöglicht zusätzlich die Abschätzung bzw. Anpassung von notwendigen Haltezeiten. Für die weitere Zukunft ist die Einbindung der mechanischen Daten in vorhandene Modelle zur numerischen Simulation und der verbesserten Vorhersage wasserstoffunterstützter Degradation von Schweißmikrostrukturen vorgesehen.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Michael RhodeORCiD
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM Dissertationsreihe (148)
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Otto-von-Guericke-Universität Magdeburg
Gutachter*innen:Thomas KannengießerORCiD, Hans Hoffmeister
Datum der Abschlussprüfung:04.04.2016
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Jahrgang/Band:148
Erste Seite:1
Letzte Seite:302
Freie Schlagwörter:Creep-resistant Steels; Degradation of Mechanical Properties; Diffusion; Hydrogen; Welding
URN:urn:nbn:de:kobv:b43-374027
ISSN:1613-4249
ISBN:978-3-9817853-3-3
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung-Nicht kommerziell-Keine Bearbeitung
Datum der Freischaltung:19.09.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.