• Treffer 10 von 10
Zurück zur Trefferliste
Zitieren Sie bitte immer diese URN: urn:nbn:de:kobv:517-opus4-476772

Entwicklung und Validierung eines Online-LIBS-Verfahrens für die Bestimmung von Nährelementen in Böden

  • In den letzten Jahrzehnten ist die Nachfrage nach kostengünstigen und flächendeckenden Kartierungsmöglichkeiten im Hinblick auf eine ertragssteigernde und umweltfreundlichere Bewirtschaftung von landwirtschaftlichen Nutzflächen stark gestiegen. Hierfür eignen sich spektroskopische Methoden wie die Röntgenfluoreszenzanalyse (RFA), Raman- und Gammaspektroskopie sowie die laserinduzierte Plasmaspektroskopie (LIBS). In Abhängigkeit von der Funktionsweise der jeweiligen Methoden werden Informationen zu verschiedensten Bodeneigenschaften wie Nährelementgehalt, Textur und pH-Wert erhalten. Ziel dieser Arbeit ist die Entwicklung eines Online-LIBS-Verfahrens zur Nährelementbestimmmung und Kartierung von Ackerflächen. Die LIBS ist eine schnelle und simultane Multielementanalyse bei der durch das Fokussieren eines hochenergetischen Laserpulses Probenmaterial von der Probenoberfläche ablatiert wird und in ein Plasma überführt wird. Beim Abkühlen des Plasmas wird Strahlung emittiert, welcheIn den letzten Jahrzehnten ist die Nachfrage nach kostengünstigen und flächendeckenden Kartierungsmöglichkeiten im Hinblick auf eine ertragssteigernde und umweltfreundlichere Bewirtschaftung von landwirtschaftlichen Nutzflächen stark gestiegen. Hierfür eignen sich spektroskopische Methoden wie die Röntgenfluoreszenzanalyse (RFA), Raman- und Gammaspektroskopie sowie die laserinduzierte Plasmaspektroskopie (LIBS). In Abhängigkeit von der Funktionsweise der jeweiligen Methoden werden Informationen zu verschiedensten Bodeneigenschaften wie Nährelementgehalt, Textur und pH-Wert erhalten. Ziel dieser Arbeit ist die Entwicklung eines Online-LIBS-Verfahrens zur Nährelementbestimmmung und Kartierung von Ackerflächen. Die LIBS ist eine schnelle und simultane Multielementanalyse bei der durch das Fokussieren eines hochenergetischen Laserpulses Probenmaterial von der Probenoberfläche ablatiert wird und in ein Plasma überführt wird. Beim Abkühlen des Plasmas wird Strahlung emittiert, welche Rückschlüsse über die elementare Zusammensetzung der Probe gibt. Diese Arbeit ist im Teilprojekt I4S (Intelligenz für Böden) im Forschungsprogramm BonaRes (Boden als nachhaltige Ressource für die Bioökonomie) des Bundesministerium für Bildung und Forschung (BMBF) entstanden. Es wurden insgesamt 651 Bodenproben von verschiedenen Test-Agrarflächen unterschiedlichster Standorte Deutschlands gemessen, ausgewertet und zu Validierungszwecken mit entsprechender Referenzanalytik wie die Optische Emissionsspektroskopie mittels induktiv gekoppeltem Plasma (ICP-OES) und die wellenlängendispersive Röntgenfluoreszenzanalyse (WDRFA) charakterisiert. Für die Quantifizierung wurden zunächst die Messparameter des LIBS-Systems auf die Bodenmatrix optimiert und für die Elemente geeignete Linien ausgewählt sowie deren Nachweisgrenzen bestimmt. Es hat sich gezeigt, dass eine absolute Quantifizierung basierend auf einem univariaten Ansatz aufgrund der starken Matrixeffekte und der schlechten Reproduzierbarkeit des Plasmas nur eingeschränkt möglich ist. Bei Verwendung eines multivariaten Ansatz wie der Partial Least Squares Regression (PLSR) für die Kalibrierung konnten für die Nährelemente im Vergleich zur univariaten Variante Analyseergebnisse mit höherer Güte und geringeren Messunsicherheiten ermittelt werden. Die Untersuchungen haben gezeigt, dass das multivariate Modell weiter verbessert werden kann, indem mit einer Vielzahl von gut analysierten Böden verschiedener Standorte, Bodenarten und einem breiten Gehaltsbereich kalibriert wird. Mithilfe der Hauptkomponentenanalyse (PCA) wurde eine Klassifizierung der Böden nach der Textur realisiert. Weiterhin wurde auch eine Kalibrierung mit losem Bodenmaterial erstellt. Trotz der Signalabnahme konnten für die verschiedenen Nährelemente Kalibriergeraden mit ausreichender, analytischer Güte erstellt werden. Für den Einsatz auf dem Acker wurde außerdem der Einfluss von Korngröße und Feuchtigkeit auf das LIBS-Signal untersucht. Die unterschiedlichen Korngrößen haben nur einen geringen Einfluss auf das LIBS-Signal und das Kalibriermodell lässt sich durch entsprechende Proben leicht anpassen. Dagegen ist der Einfluss der Feuchtigkeit deutlich stärker und hängt stark von der Bodenart ab, sodass für jede Bodenart ein separates Kalibriermodell für verschiedene Feuchtigkeitsgehalte erstellt werden muss. Mithilfe der PCA kann der Feuchtigkeitsgehalt im Boden grob abgeschätzt werden und die entsprechende Kalibrierung ausgewählt werden. Diese Arbeit liefert essentielle Informationen für eine Echtzeit-Analyse von Nährelementen auf dem Acker mittels LIBS und leistet einen wichtigen Beitrag zu einer fortschrittlichen und zukunftsfähigen Nutzung von Ackerflächen.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Madlen Chao
Dokumenttyp:Dissertation
Veröffentlichungsform:Verlagsliteratur
Sprache:Deutsch
Jahr der Erstveröffentlichung:2020
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.4 Prozessanalytik
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät
Gutachter/innen:Michael Maiwald, Ilko Bald, K. Rebner
Datum der Abschlussprüfung:08.09.2020
Verlag:Universität Potsdam
Verlagsort:Potsdam
Erste Seite:1
Letzte Seite:130
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Boden; Chemometrie; Düngeempfehlung; LIBS; Nährelemente; Precision Agriculture; Prozessanalytik
Themenfelder/Aktivitätsfelder der BAM:Analytical Sciences
Analytical Sciences / Sensorik
DOI:https://doi.org/https://doi.org/10.25932/publishup-47677
URN:urn:nbn:de:kobv:517-opus4-476772
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoAllgemeines Deutsches Urheberrecht
Datum der Freischaltung:01.03.2021
Referierte Publikation:Nein
Schriftenreihen ohne Nummerierung:BAM Dissertationen ohne Nummerierung