Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 10 von 57
Zurück zur Trefferliste

Beschleunigung und Hemmung - Komplexe Wechselwirkungen bei der Zersetzung von thermoplastischen PLA/PS-Blends unter realitätsnahen Umweltbedingungen

  • Mit dem stetigen weltweiten Anstieg der Nachfrage nach Polymerprodukten nimmt auch die potenzielle Menge an Kunststoffabfällen in der Umwelt zu. Problematisch ist, dass viele der wirtschaftlich relevantesten Kunststoffe sehr lange brauchen, um in der Umwelt abzubauen, sich dort akkumulieren und in kritisch betrachtetes Makro- und Mikroplastik zu zerfallen. Auf der Grundlage des Vorsorgeprinzips fordert die Europäische Kommission daher die Entwicklung neuer polymerer Materialien, die diesem Problem der Persistenz entgegenwirken und unter natürlichen Umweltbedingungen schneller abgebaut werden können. 1,2 Um dieses Problem anzusprechen, wurden mittels additiver Fertigung Polymerblends aus photooxidationsempfindlichem Polystyrol (PS) und hydrolyseempfindlicher Polymilchsäure (PLA) hergestellt. Die Hypothese war, dass sich die beiden Thermoplaste aufgrund ihrer unterschiedlichen Abbauprozesse gegenseitig in ihrem Abbau unterstützen, wenn sie unter moderaten, realitätsnahenMit dem stetigen weltweiten Anstieg der Nachfrage nach Polymerprodukten nimmt auch die potenzielle Menge an Kunststoffabfällen in der Umwelt zu. Problematisch ist, dass viele der wirtschaftlich relevantesten Kunststoffe sehr lange brauchen, um in der Umwelt abzubauen, sich dort akkumulieren und in kritisch betrachtetes Makro- und Mikroplastik zu zerfallen. Auf der Grundlage des Vorsorgeprinzips fordert die Europäische Kommission daher die Entwicklung neuer polymerer Materialien, die diesem Problem der Persistenz entgegenwirken und unter natürlichen Umweltbedingungen schneller abgebaut werden können. 1,2 Um dieses Problem anzusprechen, wurden mittels additiver Fertigung Polymerblends aus photooxidationsempfindlichem Polystyrol (PS) und hydrolyseempfindlicher Polymilchsäure (PLA) hergestellt. Die Hypothese war, dass sich die beiden Thermoplaste aufgrund ihrer unterschiedlichen Abbauprozesse gegenseitig in ihrem Abbau unterstützen, wenn sie unter moderaten, realitätsnahen Umweltalterungsbedingungen (45 °C) abwechselnd der Photooxidation und Hydrolyse ausgesetzt werden. In der Praxis zeigten die Ergebnisse, dass die Degradation von PLA durch die Anwesenheit von PS deutlich beschleunigt worden ist – wohingegen die Degradation von PS gehemmt wurde. In diesem Vortrag werden die detaillierten Ergebnisse der Oberflächen- (ATR-FTIR, REM) und Bulk-Analysen (DSC, TGA, FTIR-Transmission, TED-GC/MS) der Blends sowie ergänzende Mikroplastik-Ergebnisse des umgebenden Wassermediums (TED-GC/MS) erörtert.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • GUS_Kittner.pdf
    deu

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Maria Kittner
Koautor*innen:Ulrike Braun, Korinna Altmann
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Deutsch
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.6 Physik und chemische Analytik der Polymere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Sanitär- und Kommunaltechnik; Umwelttechnik
Freie Schlagwörter:Bewitterung; Hydrolyse; Mikroplastik; PLA; PS; Polymerblend; TED-GC/MS; UV-Bestrahlung; Wasser
Themenfelder/Aktivitätsfelder der BAM:Umwelt
Umwelt / Umwelt-Material-Interaktionen
Veranstaltung:50. Jahrestagung der Gesellschaft für Umweltsimulation (GUS)
Veranstaltungsort:Online meeting
Beginndatum der Veranstaltung:23.03.2022
Enddatum der Veranstaltung:24.03.2022
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:29.03.2022
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.