Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 10 von 165
Zurück zur Trefferliste

X-ray refractio techniques non-destructively quantify and classify defects in am materials

  • X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, they can detect objects with size above a few wavelengths of the radiation. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected toX-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, they can detect objects with size above a few wavelengths of the radiation. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. We hereby show the application of non-destructive X-ray refraction radiography (SXRR, 2D mapping also called topography) to problems in additive manufacturing: 1) Porosity analysis in PBF-LM-Ti64. Through the use of SXRR, we could not only map the (very sparse) porosity distribution between the layers and quantify it, but also classify, and thereby separate, the filled porosity (unmolten powder) from the keyhole and gas pores (Figure 1). 2) In-situ heat treatment of laser powder bed fusion PBF-LM-AlSi10Mg to monitor microstructure and porosity evolution as a function of temperature (Figure 2). By means of SXRR we indirectly observed the initial eutectic Si network break down into larger particles as a function of increasing temperature. We also could detect the thermally induced porosity (TIP). Such changes in the Si-phase morphology upon heating is currently only possible using scanning electron microscopy, but with a much smaller field-of-view. SXRR also allows observing the growth of some individual pores, usually studied via X-ray computed tomography, but again on much smaller fields-of-view. Our results show the great potential of in-situ SXRR as a tool to gain in-depth knowledge of the defect distribution and the susceptibility of any material to thermally induced damage and/or microstructure evolution over statistically relevant volumes.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • AAMS_Refraction_GB-v1.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Itziar Serrano, Bernd Müller, Andreas Kupsch, Giovanni Bruno
Koautor*innen:Rene' Laquai
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.5 Röntgenbildgebung
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Computed tomography; Defects; Large Scale Facilities; X-ray Refaction radiography
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Material
Material / Additive Fertigung
Veranstaltung:AAMS 2023
Veranstaltungsort:Madrid, Spain
Beginndatum der Veranstaltung:27.09.2023
Enddatum der Veranstaltung:29.09.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:09.10.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.