• Treffer 49 von 98
Zurück zur Trefferliste

Residual stresses in Laser Beam Melting (LBM) – Critical Review and outlook of activities at BAM

  • Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, inAdditive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, in the understanding of the origins of the RS fields as a function of process parameters, as well as their stability under thermal and/or mechanical exposure. In this paper, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with the focus on those produced by laser powder bed fusion) has even revealed that process parameters that were previously considered unimportant (e.g. the position and orientation on the base plate) play a major role in the onset of residual stress accumulation. However, while RS characterization is starting to be considered in the component design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigates about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even those which to date are unclear, will also be discussed. These include the determination of the stress-free reference and of the principal axes of stress. All of these aspects will lead towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Critical review RS in AM ASTM .pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Alexander Evans
Koautor*innen:Giovanni Bruno, Maximilian Sprengel, Mauro Madia, Arne Kromm
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.5 Röntgenbildgebung
9 Komponentensicherheit
9 Komponentensicherheit / 9.4 Integrität von Schweißverbindungen
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Additive Manufacturing; Diffraction; Residual stress
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Additive Fertigung
Material / Degradation von Werkstoffen
Veranstaltung:Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts
Veranstaltungsort:Gaylord National Resort And Convention Center; National Harbor, MD
Beginndatum der Veranstaltung:07.10.2019
Enddatum der Veranstaltung:10.10.2019
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:28.10.2019
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.