Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 4 von 3499
Zurück zur Trefferliste

On the accuracy of standard analysis methods for (trans-) varestraint solidification cracking testing

  • Solidification cracking of metals is a well-researched topic in the field of welding science. A material’s susceptibility to solidification cracking can be tested using numerous different specialized test procedures, one of which is the Modified Varestraint-/Transvarestraint test (MVT). It was developed at BAM in 1982 and is internationally standardised. Over the decades, this test has been extensively used to characterise the solidification cracking resistance of many different materials. The present study was conducted to further investigate the influences of the standardised MVT testing parameters, as well as the characteristics of evaluation methods on the results. Several different high alloyed martensitic LTT (low transformation temperature) filler materials, CrNi and CrMn type, were used. In previous pilot studies, these alloys have shown a rather distinctive solidification cracking behaviour. During testing, energy input per unit length and bending speed were variedSolidification cracking of metals is a well-researched topic in the field of welding science. A material’s susceptibility to solidification cracking can be tested using numerous different specialized test procedures, one of which is the Modified Varestraint-/Transvarestraint test (MVT). It was developed at BAM in 1982 and is internationally standardised. Over the decades, this test has been extensively used to characterise the solidification cracking resistance of many different materials. The present study was conducted to further investigate the influences of the standardised MVT testing parameters, as well as the characteristics of evaluation methods on the results. Several different high alloyed martensitic LTT (low transformation temperature) filler materials, CrNi and CrMn type, were used. In previous pilot studies, these alloys have shown a rather distinctive solidification cracking behaviour. During testing, energy input per unit length and bending speed were varied (especially the latter is usually kept at standard values), in addition to the most commonly altered factor - total deformation. First, the effects of different process parameter sets on the solidification cracking response were measured using the standard approach - microscopic analysis of the specimen surface. It was found that not all parameter changes had the expected outcome. For the Cr8Ni6 and Cr11Mn5 filler materials, influences of energy input per unit length and welding speed were in direct opposition. In order to investigate those apparent contradictions, μCT scans of MVT specimens were made. The results consistently show sub surface cracking, to significant, yet varying extents. Different primary solidification types were found using WDX-analysis, an aspect that is believed to be the main difference between the CrNi- and CrMn-type materials and their cracking characteristics. Results show that when it comes to testing of modern high-performance alloys, one set of standard MVT testing parameters might not be equally suitable for all materials. Also, to properly accommodate different solidification types, sub-surface cracking has to be taken into account.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • IIW Hot cracking.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Thomas Maximilian
Koautoren/innen:F. Vollert, Jens Weidemann, J. Gibmeier, Arne Kromm, Thomas Kannengiesser, Thomas Schaupp
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.4 Integrität von Schweißverbindungen
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:LTT filler material; Modified Varestraint-/Transvarestraint test; Solidification cracking; μCT
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Life Cycle von Komponenten
Veranstaltung:IIW Intermediate Meeting: Commission II-A
Veranstaltungsort:Miami, FL, USA
Beginndatum der Veranstaltung:12.03.2019
Enddatum der Veranstaltung:14.03.2019
Verfügbarkeit des Volltexts:Volltext-PDF im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:22.03.2019
Referierte Publikation:Nein