• Treffer 23 von 24
Zurück zur Trefferliste

Finite element modelling of an AC electromagnetic weld pool support in full penetration laser beam welding of thick duplex stainless steel plates

  • An electromagnetic weld pool support system for 20 mm thick duplex stainless steel AISI 2205 was investigated numerically and compared to experiments. In our former publications, it was shown how an AC magnetic field below the process zone directed perpendicular to the welding direction can induce vertically directed Lorentz forces. These can counteract the gravitational forces and allow for a suppression of material drop-out for austenitic stainless steels and aluminum alloys. In this investigation, we additionally adopted a steady-state complex magnetic permeability model for the consideration of the magnetic hysteresis behavior due to the ferritic characteristics of the material. The model was calibrated against the Jiles-Atherton model. The material model was also successfully tested against an experimental configuration before welding with a 30 mm diameter cylinder of austenitic stainless steel surrounded by duplex stainless steel. Thereby, the effects of the Curie temperature onAn electromagnetic weld pool support system for 20 mm thick duplex stainless steel AISI 2205 was investigated numerically and compared to experiments. In our former publications, it was shown how an AC magnetic field below the process zone directed perpendicular to the welding direction can induce vertically directed Lorentz forces. These can counteract the gravitational forces and allow for a suppression of material drop-out for austenitic stainless steels and aluminum alloys. In this investigation, we additionally adopted a steady-state complex magnetic permeability model for the consideration of the magnetic hysteresis behavior due to the ferritic characteristics of the material. The model was calibrated against the Jiles-Atherton model. The material model was also successfully tested against an experimental configuration before welding with a 30 mm diameter cylinder of austenitic stainless steel surrounded by duplex stainless steel. Thereby, the effects of the Curie temperature on the magnetic characteristics in the vicinity of the later welding zone were simulated. The welding process was modelled with a 3D turbulent steady-state model including heat transfer and fluid dynamics as well as the electromagnetic field equations. Main physical effects, the thermo-capillary (Marangoni) convection at the weld pool boundaries, the natural convection due to gravity as well as latent heat of solid–liquid phase transitions at the phase boundaries were accounted for in the model. The feedback of the electromagnetic forces on the weld pool was described in terms of the electromagneticinduced pressure. The FE software COMSOL Multiphysics 4.2 was used in this investigation. It is shown that the gravity drop-out associated with the welding of 20 mm thick duplex stainless steel plates due to the hydrostatic pressure can be prevented by the application of AC magnetic fields between around 70 mT and 90 mT. The corresponding oscillation frequencies were between 1 kHz and 10 kHz and the electromagnetic AC powers were between 1 kW and 2.3 kW. In the experiments, values of the electromagnetic AC power between 1.6 kW and 2.4 kW at oscillation frequencies between 1.2 kHz and 2.5 kHz were found to be optimal to avoid melt sagging or drop-out of melt in single pass fullpenetration laser beam welding of 15 mm and 20 mm thick AISI 2205.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Bachmann_Finite element modelling.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Marcel BachmannORCiD, R. Kunze, Vjaceslav Avilov, Michael RethmeierORCiD
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):ICALEO 2015 - 34th International congress on applications of lasers & electro-optics (Proceedings)
Jahr der Erstveröffentlichung:2015
Herausgeber (Institution):Laser Institute of America (LIA)
Erste Seite:650
Letzte Seite:659
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Duplex stainless steel; Electromagnetic weld pool support; FE simulation; Laser beam welding
Veranstaltung:ICALEO 2015 - 34th International congress on applications of lasers & electro-optics
Veranstaltungsort:Atlanta, GA, USA
Beginndatum der Veranstaltung:2015-10-18
Enddatum der Veranstaltung:2015-10-22
ISBN:978-1-940168-05-0
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:20.02.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.