• Treffer 2 von 3
Zurück zur Trefferliste

Analysis and synthesis of NDT reliability using the extended modular model

  • The aim of all the effort devoted to NDE reliability is to evaluate the reliability accurately, reliably and efficiently, in accordance with the specific requirements of industrial application taking into account the very different nature of influencing factors. The set up of the Modular Reliability Model in 1997 was a big step forward in the understanding of influencing mechanisms in terms of the three different main elements, i.e. the intrinsic capability (IC), the application parameters (AP) and the human factors (HF). The intrinsic capability stands for the pure physical-technological process of the signal detection caused by the waves or the rays from a material defect in the presence of noise (caused by the material and the devices). This intrinsic capability is the upper bound of the possible reliability. Already when measuring this intrinsic capability for thick walled components the original one-parameter POD should be extended to a multi-parameter POD, where, in addition toThe aim of all the effort devoted to NDE reliability is to evaluate the reliability accurately, reliably and efficiently, in accordance with the specific requirements of industrial application taking into account the very different nature of influencing factors. The set up of the Modular Reliability Model in 1997 was a big step forward in the understanding of influencing mechanisms in terms of the three different main elements, i.e. the intrinsic capability (IC), the application parameters (AP) and the human factors (HF). The intrinsic capability stands for the pure physical-technological process of the signal detection caused by the waves or the rays from a material defect in the presence of noise (caused by the material and the devices). This intrinsic capability is the upper bound of the possible reliability. Already when measuring this intrinsic capability for thick walled components the original one-parameter POD should be extended to a multi-parameter POD, where, in addition to the defect size, a number of additional physical parameters, such as the grain size distribution (or attenuation), defect depth, and angle or surface roughness, must be considered. For real life cycle assessments it is necessary to evaluate the signal response from real defects. The industrial application factors, e.g. coupling conditions, limited accessibility, heat and environmental vibrations, diminish the reliability. The amount of reduction can be determined quantitatively, if the underlying conditions are controlled. In case they are not controlled it is necessary to count for a (unknown) fluctuation in the reliability in the field anyway. The third group of important influencing factors are the human factors, which do not only cover the individual performance capability of the inspectors but also the design of the working place, the procedure, the teamwork quality, interaction with systems, the organization, and finally, the relationship between the companies involved in the inspection process and to which extend the responsible parties are aware of it. Both the internal and external organizational context, affect not only the HF but also the IC and AP. After having analysed the single factors separately it is necessary to look how everything is interconnected. When comparing an “ideal inspection” with a “real inspection” it is worthwhile to look at the existing practices, rules and standards. How do they really support reliable testing? With respect to the industrial end user, it needs to be shown how the level of reliability of NDE, influenced by the different factors and their interaction, has an impact on acceptance or rejection of safety critical parts. The approach of analysis and synthesis will be illustrated by examples of the reliability investigation of the inspection of copper canisters for nuclear fuel deposit in Sweden and Finland and German Railway inspections (hollow axle testing).zeige mehrzeige weniger

Volltext Dateien herunterladen

  • MuellerWE.1.D.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Christina Müller
Koautor*innen:Mato Pavlovic, Ludwig Bartsch, Martina Rosenthal, Gerd-Rüdiger Jaenisch, R. Holstein
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Modular model; NDT; Reliability
Veranstaltung:19th World Conference on Non-Destructive Testing
Veranstaltungsort:München, Germany
Beginndatum der Veranstaltung:13.06.2016
Enddatum der Veranstaltung:17.06.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:04.10.2016
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.