• Treffer 1 von 1
Zurück zur Trefferliste

Influence of composition on the thermal ageing behaviour of EPDM

  • Ethylene-propylenene-diene copolymer rubbers (EPDM) are used in a wide range of sealing applications e.g. in automotive industry or in containers for dangerous goods. Investigations with regard to the ageing behavior and lifetime prediction of commercial EPDM rubber seals consisting of 48 % polypropylene (PP) and 4.1 % of 5-ethylidene-2-norbornene (ENB) were conducted [1]. However, structural parameters (monomer ratio, diene type, curing agent etc.) and additives (filler, plasticizer etc.) are known to affect the ageing behavior of rubber compounds [2, 3]. The aim of the current study was to elucidate the influence of each component on the overall deterioration of material properties after thermal ageing. Therefore, different EPDM mixtures were prepared at BAM, the reference being an EPDM with 48 % PP and 4.1 % ENB reinforced with Sillitin. Five more formulations were prepared in order to assess the effect of (i) filler type (carbon black or sillitin), (ii) curing agent (sulfur orEthylene-propylenene-diene copolymer rubbers (EPDM) are used in a wide range of sealing applications e.g. in automotive industry or in containers for dangerous goods. Investigations with regard to the ageing behavior and lifetime prediction of commercial EPDM rubber seals consisting of 48 % polypropylene (PP) and 4.1 % of 5-ethylidene-2-norbornene (ENB) were conducted [1]. However, structural parameters (monomer ratio, diene type, curing agent etc.) and additives (filler, plasticizer etc.) are known to affect the ageing behavior of rubber compounds [2, 3]. The aim of the current study was to elucidate the influence of each component on the overall deterioration of material properties after thermal ageing. Therefore, different EPDM mixtures were prepared at BAM, the reference being an EPDM with 48 % PP and 4.1 % ENB reinforced with Sillitin. Five more formulations were prepared in order to assess the effect of (i) filler type (carbon black or sillitin), (ii) curing agent (sulfur or peroxide), (iii) plasticizer, (iv) ethylene-propylene ratio and (v) ENB content. Initially, the properties of the unaged materials were investigated by tensile testing, hardness and density measurements, TGA, DSC and DMA. Sulfur vulcanization resulted in higher elongation at break due to the flexibility of the sulfidic crosslinks. Carbon black resulted in better reinforcement compared to Sillitin. A higher ethylene and ENB content lead to higher hardness due to higher crystallinity and higher crosslink density, respectively. Thermal ageing for up to 30 days (with 10 days intervals) took place in circulating hot air ovens at 125 °C. Pronounced crosslinking was found to take place in all peroxide-cured materials, as the unreacted double bonds of the ENB units acted as starting points for oxidation and crosslinking. Increasing the ethylene content resulted in an increase in the ageing resistance of EPDM. This improvement was attributed to the higher crystallinity that inhibits oxygen diffusion and to the smaller number of chain scissions which occur in the PP units. Although significant loss of the plasticizer was observed, the remaining plasticizer adequately improved the tensile properties of the material. The filler type did not significantly affect the ageing behavior of EPDM. Finally, the lower thermal stability of the sulfidic crosslinks resulted in desulfurization and, thus, in an increase in the crosslinking density. To sum up, it has been shown that the monomer composition, curing agent and additives used in EPDM formulations greatly influence the properties and ageing resistance of these materials.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Poster KHK_v8.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Emmanouil Chatzigiannakis
Koautor*innen:Anja Kömmling, Matthias Jaunich, Dietmar Schulze, Dietmar Wolff
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Compound; Degradation; Elastomer
Veranstaltung:12. Kautschuk Herbst Kolloquium
Veranstaltungsort:Hanover, Germany
Beginndatum der Veranstaltung:22.11.2016
Enddatum der Veranstaltung:24.11.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:29.11.2016
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.