• Treffer 1 von 4
Zurück zur Trefferliste

First QSPR models to predict the thermal stability of potential self-reactive substances

  • Self-reactive substances are unstable chemical substances which can easily decompose and may lead to explosion in transport, storage, or process situations. For this reason, their thermal stability properties are required to assess possible process safety issues and for classification purpose. In this study, the first quantitative structure–property relationships (QSPR) dedicated to this class of compounds were developed to predict the heat of decomposition of possible self-reactive substances from their molecular structures. The database used to develop and validate the models was issued from a dedicated experimental campaign on 50 samples using differential scanning calorimetry in homogeneous experimental conditions. QSPR models were derived using the GA-MLR methods (using a genetic algorithm and multi-linear regressions) using molecular descriptors calculated by Dragon software based on two types of inputs: 3D molecular structures determined using the density functional theorySelf-reactive substances are unstable chemical substances which can easily decompose and may lead to explosion in transport, storage, or process situations. For this reason, their thermal stability properties are required to assess possible process safety issues and for classification purpose. In this study, the first quantitative structure–property relationships (QSPR) dedicated to this class of compounds were developed to predict the heat of decomposition of possible self-reactive substances from their molecular structures. The database used to develop and validate the models was issued from a dedicated experimental campaign on 50 samples using differential scanning calorimetry in homogeneous experimental conditions. QSPR models were derived using the GA-MLR methods (using a genetic algorithm and multi-linear regressions) using molecular descriptors calculated by Dragon software based on two types of inputs: 3D molecular structures determined using the density functional theory (DFT), allowing access to three-dimensional descriptors, and from SMILES codes, favoring the access to simpler models, requiring no preliminary quantum chemical calculations. All models respected the OECD validation guidelines for regulatory ac ceptability of QSPR models. They were tested by internal and external validation tests and their applicability domains were defined and analyzed.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Knorr 2022_Process Safety and Environmental Protection_First QSPR models.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:F. Guillaume, Annett Knorr, P. Rotureau
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Process Safety and Environmental Protection (Elsevier)
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:2 Prozess- und Anlagensicherheit
2 Prozess- und Anlagensicherheit / 2.3 Einstufung von Gefahrstoffen und -gütern
Verlag:Elsevier Ltd.
Jahrgang/Band:163
Erste Seite:191
Letzte Seite:199
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Genetic algorithm; Quantitative Structure-Property Relationships; Self-reactive substances; Thermal stability
Themenfelder/Aktivitätsfelder der BAM:Material
DOI:10.1016/j.psep.2022.05.017
ISSN:0957-5820
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:08.09.2022
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:08.09.2022
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.