• Treffer 1 von 1
Zurück zur Trefferliste

Characterizing the thermal diffusivity of single, micrometer-sized fibers via high-resolution lock-in thermography

  • Many advanced materials consist of fibers. They are used as nonwovens, fabrics, or in composite materials. Characterization of individual fibers allows us to predict resulting material properties. We present a measurement setup and analysis software to characterize individual, micrometer-sized fibers fast and reliably. The setup is based on the lock-in thermography principle. Thermal diffusivity values of seven reference samples agree very well with previously reported values. We use our setup to investigate critical measurement parameters like excitation frequency, excitation power, pixel size, and fiber orientation. Our results show that fibers with subpixel diameters can be measured even if they are not aligned. However, special care has to be taken to choose an adequate excitation power. Measurements at high intensities can underestimate thermal diffusivity even though the raw data looks reasonable. By automatically measuring at different excitation powers, our setup solves thisMany advanced materials consist of fibers. They are used as nonwovens, fabrics, or in composite materials. Characterization of individual fibers allows us to predict resulting material properties. We present a measurement setup and analysis software to characterize individual, micrometer-sized fibers fast and reliably. The setup is based on the lock-in thermography principle. Thermal diffusivity values of seven reference samples agree very well with previously reported values. We use our setup to investigate critical measurement parameters like excitation frequency, excitation power, pixel size, and fiber orientation. Our results show that fibers with subpixel diameters can be measured even if they are not aligned. However, special care has to be taken to choose an adequate excitation power. Measurements at high intensities can underestimate thermal diffusivity even though the raw data looks reasonable. By automatically measuring at different excitation powers, our setup solves this issue.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • acs_jpcc_2c04254.pdf
    eng

    Article

  • acs_jpcc_2c04254_si_001.pdf
    eng

    Supporting information

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:T. TranORCiD, C. Kodisch, M. Schöttle, Nelson Wilbur Pech MayORCiD, M. RetschORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):The journal of physical chemistry C
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.0 Abteilungsleitung und andere
Verlag:American Chemical Society (ACS)
Verlagsort:Washington, DC
Jahrgang/Band:126
Ausgabe/Heft:32
Erste Seite:14003
Letzte Seite:14010
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Electronic, optical and magnetic materials; General energy; Physical and theoretical chemistry; Surfaces, coatings and films
Themenfelder/Aktivitätsfelder der BAM:Material
Umwelt
Umwelt / Sensorik
DOI:10.1021/acs.jpcc.2c04254
ISSN:1932-7455
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:28.08.2023
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:28.08.2023
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.