Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 46 von 107
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-1357

Experimentelle Untersuchungen und CFD-Simulationen von DTBP-Poolfeuern

  • Es wurden Massenabbrandraten, Flammentemperaturen, spezifische Ausstrahlungen (Surface emissive power, SEP), Bestrahlungsstärken und Flammenlängen von DTBP- und Kerosin-Poolfeuern in Labor- und Feldversuchen (0.003 m < d < 3.15 m) gemessen und CFDSimulationen von DTBP- Poolfeuern bei d = 1.12 m und d = 3.15 m durchgeführt. Der Einfluss von Aktivierungs-, Verbrennungs- und Zersetzungsenergie sowie der Zersetzungsprodukte auf das Abbrandverhalten von DTBP wurde experimentell untersucht. Die mit der DDK gemessene Zersetzungsenergie von DTBP liegt im Bereich von – 189 kJ/mol bis – 210 kJ/mol, womit sie etwa 20 % bis 40 % höher ist als die mit dem DDK gemessene Aktivierungsenergie der Zersetzungsreaktion. Die in einem Verbrennungskalorimeter gemessene mittlere Verbrennungsenthalpie von DTBP beträgt = � c _H 36 000 kJ/kg. Die mit Hilfe der FTIR gefundenen Zersetzungsprodukte von DTBP in der Gasphase sind vor allem Aceton und Ethan. Die gemessenen Massenabbrandraten von DTBP-Poolfeuern (0.20Es wurden Massenabbrandraten, Flammentemperaturen, spezifische Ausstrahlungen (Surface emissive power, SEP), Bestrahlungsstärken und Flammenlängen von DTBP- und Kerosin-Poolfeuern in Labor- und Feldversuchen (0.003 m < d < 3.15 m) gemessen und CFDSimulationen von DTBP- Poolfeuern bei d = 1.12 m und d = 3.15 m durchgeführt. Der Einfluss von Aktivierungs-, Verbrennungs- und Zersetzungsenergie sowie der Zersetzungsprodukte auf das Abbrandverhalten von DTBP wurde experimentell untersucht. Die mit der DDK gemessene Zersetzungsenergie von DTBP liegt im Bereich von – 189 kJ/mol bis – 210 kJ/mol, womit sie etwa 20 % bis 40 % höher ist als die mit dem DDK gemessene Aktivierungsenergie der Zersetzungsreaktion. Die in einem Verbrennungskalorimeter gemessene mittlere Verbrennungsenthalpie von DTBP beträgt = � c _H 36 000 kJ/kg. Die mit Hilfe der FTIR gefundenen Zersetzungsprodukte von DTBP in der Gasphase sind vor allem Aceton und Ethan. Die gemessenen Massenabbrandraten von DTBP-Poolfeuern (0.20 kg/(m² s) ≤ ′′ ≤ DTBP m& 0.30 kg/(m² s)) zeigen eine nur geringe Abhängigkeit vom Pooldurchmesser d, sind aber abhängig vom d fünf bis zwanzig mal größer als die von Kohlenwasserstoff-Poolfeuern. Die mit dem IR- Thermographie-System gemessenen Temperaturen der DTBP-Poolfeuer (1480 K bis 1580 K) sind im gesamten untersuchten Bereich ca. 300 K bis 600 K höher als die der Kerosin-Poolfeuer und stimmen mit den sehr heißen LNG-Poolfeuern bei 8 m ≤ d ≤ 15 m gut überein. Die mit dem IR-Thermographie-System über die gesamte Brenndauer gemessenen mittleren spezifischen Ausstrahlungen der DTBP-Poolfeuer betragen SEP = 130 kW/m² bei d = 1.12 m und SEP = 250 kW/m² bei d = 3.15 m und liegen somit um den Faktor drei bis zehn höher als bei Kohlenwasserstoff-Poolfeuern. Die mit (Ellipsoidal-) Radiometern gemessene mittlere Bestrahlungsstärke der DTBPPoolfeuer beträgt E (_y = 0.50 m, d =1.12 m) = 113 kW/m² und ist somit im Vergleich zu den n-Pentan-, Superbenzin- und Diesel-Poolfeuern um den Faktor zwei bis zehn größer. Die unter Verwendung der Thomas- Gleichung abgeschätzten Flammenlängen von DTBPPoolfeuern bei d < 0.50 m zeigen eine gute Übereinstimmung mit den mit S-VHSVideokameras gemessenen mittleren Flammenlängen (11d ≤ H ≤ 17d). Im Bereich von 0.05 m ≤ d ≤ 1.15 m sind die mittleren Flammenlängen H größer als im Experiment, sie stimmt dagegen bei d = 3.15 m gut überein und beträgt H (d = 3.15 m) ≈ 6d. Es wurden CFD-Simulationen von DTBP-Poolfeuern bei d = 1.12 m und d = 3.15 m unter Verwendung des kommerziellen ANSYS CFX Software Packet durchgeführt. Die dreidimensionalen Berechnungsgeometrien wurden mit Hexa-Gittern vernetzt, wobei die Anzahl der Zellen pro Volumen im Bereich von 100 000 bis 400 000 betrug. Die Zeitschritte für die CFD-Simulationen waren abhängig von der Feinheit des Gitters und dem Pooldurchmesser Δt = 10─ 2 s bis Δt = 10─ 5 s. Für die Modellierung der DTBP-Poolflammen wurde ein Datensatz für den Brennstoff DTBP im Preprocessor des ANSYS CFX-Programms implementiert. Es wurde die vollständige Verbrennung von DTBP berücksichtigt. Die Geschwindigkeitsgleichung der Irreversalreaktion ist etwa 1. Ordnung bezogen auf DTBP und Sauerstoff. Für die Temperaturabhängigkeit wurde der Arrhenius-Ansatz verwendet. Als Submodelle wurden das k-ε Turbulenzmodell, das Large Eddy Simulation Turbulenzmodell, das Detached Eddy Simulation Turbulenzmodell, das Scale Adaptive Simulation Turbulenzmodell, das Eddy Dissipation Verbrennungsmodell, das Rosseland Strahlungsmodell, das P1 Strahlungsmodell, das Monte Carlo Strahlungsmodell, das Discrete Transfer Strahlungsmodell und das Magnussen Rußmodell verwendet. Die simulierten maximalen Temperaturen der DTBP-Poolfeuer ergaben sich zu 1 410 K (d = 1.12 m) bzw. 1 520 K (d = 3.15 m), die gut mit den experimentell gemessenen Temperaturen übereinstimmen. Die simulierten mittleren spezifischen Ausstrahlungen für DTBP-Poolfeuer liegen bei SEP (d = 1.12 m) = 110 kW/m² und SEP (d = 3.15 m) = 180 kW/m². Die simulierten Flammenlängen der DTBP-Poolfeuer (5d ≤ H ≤ 6d) zeigen eine gute Übereinstimmung mit den gemessenen Flammenlängen. Die simulierten maximalen Strömungsgeschwindigkeiten in der Flammenmitte liegen z. B. für d = 3.15 m im Bereich von 25 m/s bis 30 m/s. Die simulierten Massenanteile an Ruß betragen 3.2∗ 10– 6 (d = 3.15 m) und 2.55∗ 10– 6 (d = 1.12 m).zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Hyunjoo Chun
Dokumenttyp:Dissertation
Veröffentlichungsform:Eigenverlag BAM
Schriftenreihe (Bandnummer):BAM Dissertationsreihe (23)
Sprache:Deutsch
Jahr der Erstveröffentlichung:2007
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Universität Duisburg-Essen, Fachbereich Chemie
Gutachter*innen:Axel Schönbucher, Tammo Redeker
Datum der Abschlussprüfung:01.03.2007
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Jahrgang/Band:23
Erste Seite:1
Letzte Seite:157
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:CFD-Simulation; Di-tert-butylperoxid; Massenabbrandrate; Poolfeuer; Surface emissive power (SEP)
URN:urn:nbn:de:kobv:b43-1357
ISSN:1613-4249
ISBN:978-3-981655-0-0
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoAllgemeines Deutsches Urheberrecht
Datum der Freischaltung:23.01.2015
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.