Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 28 von 713
Zurück zur Trefferliste

Reduced Order Model for Temperature Field Simulation of Wire Arc Additive Manufacturing with Domain Mapping

  • Additive manufacturing (AM) has revolutionized the manufacturing industry, offering a new paradigm to produce complex geometries and parts with customized properties. Among the different AM techniques, the wire arc additive manufacturing (WAAM) process has gained significant attention due to its high deposition rate and low equipment cost. However, the process is characterized by a complex thermal history making it challenging to simulate it in real-time for online process control and optimization. In this context, a reduced order model (ROM) using the proper generalized decomposition (PGD) method [1] is proposed as a powerful tool to overcome the limitations of conventional numerical methods and enable the real-time simulation of the temperature field of WAAM processes. These simulations use a moving heat source leading to a hardly separable parametric problem, which is handled by applying a novel mapping approach [2]. This procedure makes it possible to create a simple separatedAdditive manufacturing (AM) has revolutionized the manufacturing industry, offering a new paradigm to produce complex geometries and parts with customized properties. Among the different AM techniques, the wire arc additive manufacturing (WAAM) process has gained significant attention due to its high deposition rate and low equipment cost. However, the process is characterized by a complex thermal history making it challenging to simulate it in real-time for online process control and optimization. In this context, a reduced order model (ROM) using the proper generalized decomposition (PGD) method [1] is proposed as a powerful tool to overcome the limitations of conventional numerical methods and enable the real-time simulation of the temperature field of WAAM processes. These simulations use a moving heat source leading to a hardly separable parametric problem, which is handled by applying a novel mapping approach [2]. This procedure makes it possible to create a simple separated representation of the model, which allows to simulate multiple layers. In this contribution, a PGD model is derived for the temperature field simulation of the WAAM process. A good agreement with a standard finite element method is shown. The reduced model is further used in a stochastic model parameter estimation using Bayesian inference, speeding up calibrations and ultimately leading to a calibrated real-time simulation.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 2023-presentation-MORTech.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Dominic Strobl
Koautor*innen:Annika Robens-Radermacher, C. Ghnatios, Andreas Pittner, Michael Rethmeier, Jörg F. Unger
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.7 Modellierung und Simulation
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurbau
Freie Schlagwörter:Reduced order modelling; Wire arc additive manufacturing
Themenfelder/Aktivitätsfelder der BAM:Infrastruktur
Material
Veranstaltung:MORTech 2023 - 6th International Workshop on Model Reduction Techniques
Veranstaltungsort:Paris, France
Beginndatum der Veranstaltung:22.11.2023
Enddatum der Veranstaltung:24.11.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:12.12.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.