• Treffer 23 von 896
Zurück zur Trefferliste

Coupling density phase field models with atomistic potentials

  • A density-based phase field model is developed where the free energy functional is explicitly linked with molecular dynamics and is referred to as the Molecular Phase Field Method (MoPF). MoPF simulations involve expressing interatomic potentials in terms of density to form a density based free energy functional. Inputs to this functional are taken from atomistics such that the phase field density profile matches the corresponding density profile from atomistic simulations. We analyze our results by comparing the MoPF calculated excess interfacial energies with excess interfacial energies calculated using molecular dynamics associated with several nickel grain boundaries. Additionally, a comparison is made between our results and the interfacial energies of a \Sigma7 boundary across a variety of FCC systems simulated using density functional theory. The MoPF method is able to successfully predict grain boundary free energy trends between grain boundary and material types offering anA density-based phase field model is developed where the free energy functional is explicitly linked with molecular dynamics and is referred to as the Molecular Phase Field Method (MoPF). MoPF simulations involve expressing interatomic potentials in terms of density to form a density based free energy functional. Inputs to this functional are taken from atomistics such that the phase field density profile matches the corresponding density profile from atomistic simulations. We analyze our results by comparing the MoPF calculated excess interfacial energies with excess interfacial energies calculated using molecular dynamics associated with several nickel grain boundaries. Additionally, a comparison is made between our results and the interfacial energies of a \Sigma7 boundary across a variety of FCC systems simulated using density functional theory. The MoPF method is able to successfully predict grain boundary free energy trends between grain boundary and material types offering an atomistically informed mesoscale formulation for studying grain boundary physics.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • CouplingDPFwAtomistics_2024.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:David Jacobson, Reza Darvishi Kamachali, Gregory Thompson
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Computational Materials Science
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.5 Materialmodellierung
Verlag:Elsevier
Jahrgang/Band:233
Aufsatznummer:112763
Erste Seite:1
Letzte Seite:6
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Atomistic Simulation; Density-based Phase-Field Modelling; Grain Boundary
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialdesign
DOI:10.1016/j.commatsci.2023.112763
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:22.01.2024
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:26.02.2024
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.