• Treffer 12 von 38
Zurück zur Trefferliste

Preparation of core–shell structured NaYF4:Yb3+/ Tm3+@NaYF4:Yb3+/Er3+ nanoparticles with high sensitivity, low resolution and good reliability and application of their fluorescence temperature properties

  • A series of NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+ nanoparticles doped with Tm3+ and Er3+ were successfully prepared by the solvothermal method. Under 980 nm laser excitation, intense upconversion emission peaks of Tm3+ and Er3+ were observed for all samples. By doping Tm3+ and Er3+ with core–shell partitioning, not only a significant increase in fluorescence intensity could be achieved, but also simultaneous temperature measurements on multiple thermocouple energy levels could be realised. In addition, the temperature sensing performance of different thermocouple energy levels was also investigated, and it was found that the 3 F3 → 3 H6 and 1 G4 → 3 F4 thermocouple energy level pairs of Tm3+ were the best, with maximum absolute sensitivity and maximum relative sensitivity of up to 0.0250 K−1 and 2.155% K−1 respectively, higher than the sensitivity of other thermocouple energy levels. It has a temperature resolution of less than 0.0139 K, which is lower than that of most materials availableA series of NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+ nanoparticles doped with Tm3+ and Er3+ were successfully prepared by the solvothermal method. Under 980 nm laser excitation, intense upconversion emission peaks of Tm3+ and Er3+ were observed for all samples. By doping Tm3+ and Er3+ with core–shell partitioning, not only a significant increase in fluorescence intensity could be achieved, but also simultaneous temperature measurements on multiple thermocouple energy levels could be realised. In addition, the temperature sensing performance of different thermocouple energy levels was also investigated, and it was found that the 3 F3 → 3 H6 and 1 G4 → 3 F4 thermocouple energy level pairs of Tm3+ were the best, with maximum absolute sensitivity and maximum relative sensitivity of up to 0.0250 K−1 and 2.155% K−1 respectively, higher than the sensitivity of other thermocouple energy levels. It has a temperature resolution of less than 0.0139 K, which is lower than that of most materials available today. By using this material as a probe to build a fiber optic temperature sensor platform, it was found to have reliable temperature measurement performance.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Meng_CrystEngCommun 2022_Preparation of core-shell structured.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:M. Meng, R. Zhang, X. Fa, J. Yang, Z. Cheng, A. A. Ansari, Jun OuORCiD, Christian WürthORCiD, Ute Resch-GengerORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Royal Society of Chemistry
Jahr der Erstveröffentlichung:2022
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.2 Biophotonik
Verlag:RSC Publishing
Jahrgang/Band:24
Ausgabe/Heft:9
Erste Seite:1752
Letzte Seite:1763
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Dye; Flourescence; Infrastructure; Lanthanide; Monitoring; Nano; Optical probe; Particle; Qantum yield; Quality assurance; Sensor; Temperature; Upconversion
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Material
Material / Nano
DOI:10.1039/d1ce01729b
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:02.03.2022
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:09.03.2022
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.