Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 6 von 11
Zurück zur Trefferliste

Data-driven chemical understanding and machine learning of materials properties

  • Bonds and local atomic environments are crucial descriptors of material properties. They have been used to create design rules and heuristics for materials. More and more frequently, they are used as features in machine learning. Implementations and algorithms (e.g., ChemEnv and LobsterEnv) for identifying these local atomic environments based on geometrical characteristics and quantum-chemical bonding analysis are nowadays available. Fully automatic workflows and analysis tools have been developed to use quantum-chemical bonding analysis on a large scale and for machine-learning approaches. The latter relates to a general trend toward automation in density functional-based materials science. The lecture will demonstrate how our tools, that assess local atomic environments, helped to test and develop heuristics and design rules and an intuitive understanding of materials.

Volltext Dateien herunterladen

  • Talk_MC16_2023_final.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Janine GeorgeORCiD
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Automation; Bonding Analysis; Materials Informatics
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialdesign
Veranstaltung:16th International conference on materials chemistry (MC16)
Veranstaltungsort:Dublin, Irland
Beginndatum der Veranstaltung:03.07.2023
Enddatum der Veranstaltung:06.07.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:10.07.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.