• Treffer 81 von 194
Zurück zur Trefferliste

Complementary methodical approach for the analysis of a perovskite solar cell layered system

  • Loss in efficiency of perovskite solar cells may be caused by structural and/or chemical alterations of the complex layered system. As these changes might take place either in the bulk and/or on the surface of the stratified material, analytical tools addressing both key issues are selected and combined. SEM/EDX combined with XPS were chosen as appropriate methodical approach to characterise perovskite laboratory cells in depth and complementary on top, before and after light exposure. The layered perovskite system investigated here is based on glass covered with fluorine doped tin oxide (FTO), followed by three porous thin films of TiO2, ZrO2 and a thick monolithic carbon. The TiO2 film is subdivided into a dense layer covered by a porous one constituted of nanoparticles with a truncated bipyramidal shape. This layered system serves as the matrix for the perovskite. After infiltration of perovskite solution and annealing, EDX spectral maps on cross-sections of the specimen have beenLoss in efficiency of perovskite solar cells may be caused by structural and/or chemical alterations of the complex layered system. As these changes might take place either in the bulk and/or on the surface of the stratified material, analytical tools addressing both key issues are selected and combined. SEM/EDX combined with XPS were chosen as appropriate methodical approach to characterise perovskite laboratory cells in depth and complementary on top, before and after light exposure. The layered perovskite system investigated here is based on glass covered with fluorine doped tin oxide (FTO), followed by three porous thin films of TiO2, ZrO2 and a thick monolithic carbon. The TiO2 film is subdivided into a dense layer covered by a porous one constituted of nanoparticles with a truncated bipyramidal shape. This layered system serves as the matrix for the perovskite. After infiltration of perovskite solution and annealing, EDX spectral maps on cross-sections of the specimen have been measured. The distribution of relevant elements – Si, Sn, Ti, Zr and C – correlates conclusively with layers visible in the acquired SEM images. Lead and iodine are distributed throughout the porous layers C, ZrO2 and TiO2. In a SEM micrograph taken of the cross-section of a sample after illumination, the glass substrate and all layers FTO, TiO2, ZrO2 as well as C are clearly identified. By EDX it was found that several weeks of ambient daylight did not change significantly the qualitative elemental composition of lead and iodine throughout the solar cell system. It was confirmed with EDX that nanoparticles identified in high-resolution SEM micrographs contain mainly Pb and I, indicating these to be the perovskite crystals. However, a time-dependent compositional and chemical altering was observed with XPS for the near-surface region of the outermost ~10 nm after two months of illumination.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Hodoroaba_Perovskite_MM2017.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Vasile-Dan HodoroabaORCiD
Koautor*innen:Steffi Rades, F. Oswald, S. Narbey, Jörg Radnik
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:EDX; Nanoparticles; Perovskite; SEM; Thin films; TiO2; XPS
Veranstaltung:Microscopy & Microanalysis 2017 Meeting
Veranstaltungsort:St. Louis, MO, USA
Beginndatum der Veranstaltung:06.08.2017
Enddatum der Veranstaltung:10.08.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:28.08.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.