• Treffer 26 von 208
Zurück zur Trefferliste

Measurement and calculation of multimodal material VSSA

  • In order to ground the debate on the metrics that apply for VSSA determined by adsorption isotherms and to illustrate the consequences of real bimodality for VSSA screening, a bimodal mixture has been selected for systematic investigations. A sample of BaSO4 fine was spiked with 10% g/g of BaSO4 ultrafine. The ultrafine grade is a clear nanomaterial (NM) according to the size criterion with a median Feretmin of 27 nm and the fine grade is clearly a non-NM with a median Feretmin of 249 nm. Because of the number ratio of 300:1, the mixture has to be a NM according to the size criterion. Three independent BET measurements were performed on the mixture by two different labs and resulted in a mean VSSA of 23 m2/cm3 with a standard deviation of 3.3 m2/cm3, which leads to a dminVSSA of 258 nm, and, therefore, would falsely classify the material as a non-NM. This effect was predicted earlier by calculated examples (Roebben et al. 2014) and demonstrates that mixtures of nano- and non-nanoIn order to ground the debate on the metrics that apply for VSSA determined by adsorption isotherms and to illustrate the consequences of real bimodality for VSSA screening, a bimodal mixture has been selected for systematic investigations. A sample of BaSO4 fine was spiked with 10% g/g of BaSO4 ultrafine. The ultrafine grade is a clear nanomaterial (NM) according to the size criterion with a median Feretmin of 27 nm and the fine grade is clearly a non-NM with a median Feretmin of 249 nm. Because of the number ratio of 300:1, the mixture has to be a NM according to the size criterion. Three independent BET measurements were performed on the mixture by two different labs and resulted in a mean VSSA of 23 m2/cm3 with a standard deviation of 3.3 m2/cm3, which leads to a dminVSSA of 258 nm, and, therefore, would falsely classify the material as a non-NM. This effect was predicted earlier by calculated examples (Roebben et al. 2014) and demonstrates that mixtures of nano- and non-nano multimodal materials very likely lead to false negative classifications. Moreover, the measured VSSA values for the mixture of 23 m²/cm³ are in excellent accord with the value of 24.6 m²/cm³ predicted from the TEM size distributions of the individual materials according to the model described by JRC (Roebben et al. 2014), but are significantly different from the prediction of 309 m²/cm³ obtained from the same TEM size distribution by a particle number weighted approach (Lecloux 2015). The same is true for a 50% g/g mixture. We conclude that the mass-based VSSA approach (Roebben et al. 2014) is equal to the VSSA that is measurable by adsorption isotherms, such as from standardized BET.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Bimodal_BaSO4_Hodoroaba_NANoREGWorkshop.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Vasile-Dan HodoroabaORCiD
Koautor*innen:Johannes Mielke, W. Wohlleben
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Electron microscopy; Nanomaterial; Particle size distribution; VSSA
Veranstaltung:NANoREG Technical Meeting on VSSA discussion
Veranstaltungsort:Schiphol, The Netherlands
Beginndatum der Veranstaltung:26.09.2016
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:09.01.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.