• Treffer 10 von 574
Zurück zur Trefferliste

High Temperature Fatigue Crack Growth in Nickel-Based Alloys Refurbished by Additive Manufacturing

  • Hybrid additive manufacturing plays a crucial role in the restoration of gas turbine blades, where, e.g., the damaged blade tip is reconstructed by the additive manufacturing process on the existing blade made of a parent nickel-based alloy. However, inherent process-related defects in additively manufactured material, along with the interface created between the additively manufactured and the cast base material, impact the fatigue crack growth behavior in bi-material components. This study investigates the fatigue crack growth behavior in bi-material specimens of nickel-based alloys, specifically, additively manufactured STAL15 and cast alloy 247DS. The tests were conducted at 950 °C with stress ratios of 0.1 and −1. Metallographic and fractographic investigations were carried out to understand crack growth mechanisms. The results revealed significant retardation in crack growth at the interface. This study highlights the potential contributions of residual stresses andHybrid additive manufacturing plays a crucial role in the restoration of gas turbine blades, where, e.g., the damaged blade tip is reconstructed by the additive manufacturing process on the existing blade made of a parent nickel-based alloy. However, inherent process-related defects in additively manufactured material, along with the interface created between the additively manufactured and the cast base material, impact the fatigue crack growth behavior in bi-material components. This study investigates the fatigue crack growth behavior in bi-material specimens of nickel-based alloys, specifically, additively manufactured STAL15 and cast alloy 247DS. The tests were conducted at 950 °C with stress ratios of 0.1 and −1. Metallographic and fractographic investigations were carried out to understand crack growth mechanisms. The results revealed significant retardation in crack growth at the interface. This study highlights the potential contributions of residual stresses and microstructural differences to the observed crack growth retardation phenomenon, along with the conclusion from an earlier study on the effect of yield strength mismatch on crack growth behavior at a perpendicular interface in bi-material specimens.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Superalloys 2024_High temperature FCG in nickel-based alloys refurbished by AM.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Ashok BhadeliyaORCiD, Birgit Rehmer, Bernard Fedelich, Torsten Jokisch, Birgit Skrotzki, Jürgen Olbricht
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Superalloys 2024: Proceedings of the 15th International Symposium on Superalloys
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.2 Metallische Hochtemperaturwerkstoffe
Herausgeber (Institution):The Minerals, Metals & Materials Society
Verlag:Springer
Verlagsort:Cham
Jahrgang/Band:15th
Erste Seite:994
Letzte Seite:1001
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Additive manufacturing; Bi-material structure; Fatigue crack growth; Nickel-based alloys
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Additive Fertigung
Veranstaltung:Superalloys 2024 Conference
Veranstaltungsort:Champion, Pennsylvania, USA
Beginndatum der Veranstaltung:08.09.2024
Enddatum der Veranstaltung:12.09.2024
DOI:10.1007/978-3-031-63937-1_92
ISSN:2367-1181
ISSN:2367-1696
ISBN:978-3-031-63937-1
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:30.08.2024
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.