Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 48 von 224
Zurück zur Trefferliste

Utilization of the Tubular Specimen Technique for the Qualification of Metallic Materials for Hydrogen Technologies

  • As the world shifts to a decarbonized economy, the demand for hydrogen-based technologies is rapidly increasing. In order to make optimal use of hydrogen as an energy carrier, the infrastructure for hydrogen storage and transport in particular, must meet high technical safety standards. The indispensable basis for such safety assessments are the material properties, which must be evaluated under operating conditions that are as real as possible. The conventional method for the assessment of the material properties in gaseous hydrogen is conducted by testing materials in high-pressure hydrogen gas in a pressure vessel (autoclave). It is an established method that allows to perform common standardized tests such as tensile, fatigue and crack growth tests under varying hydrogen conditions. However, this method is complex and entails high costs due to extensive safety regulations. The hollow specimen technique is a more efficient test method, which can be used to assess the mechanicalAs the world shifts to a decarbonized economy, the demand for hydrogen-based technologies is rapidly increasing. In order to make optimal use of hydrogen as an energy carrier, the infrastructure for hydrogen storage and transport in particular, must meet high technical safety standards. The indispensable basis for such safety assessments are the material properties, which must be evaluated under operating conditions that are as real as possible. The conventional method for the assessment of the material properties in gaseous hydrogen is conducted by testing materials in high-pressure hydrogen gas in a pressure vessel (autoclave). It is an established method that allows to perform common standardized tests such as tensile, fatigue and crack growth tests under varying hydrogen conditions. However, this method is complex and entails high costs due to extensive safety regulations. The hollow specimen technique is a more efficient test method, which can be used to assess the mechanical properties of materials under high-pressure hydrogen gas. The procedure is conducted by enclosing high-pressure gas into a hole along the axis of the tensile test specimen. Recently, this method has been successfully performed at pressures up to 1000 bar and over a wide range of temperatures. Due to the low hydrogen volume needed, this method requires minimal safety regulation; therefore, the costs are reduced when compared to the conventional autoclave technique. This method is now in a standardization process, which has been initiated by Japan as a new working package in ISO (TC 164/SC 1/WG 9). The following contribution presents preliminary results obtained testing common grades of metastable austenitic stainless steel. For this purpose, the mechanical properties and fracture surface of solid and tubular specimens were assessed and compared using slow strain rate tensile (SSRT) test as part of the preliminary work at the Fraunhofer IWM. In a similar way, pipeline steels evaluated under hydrogen atmospheres using the geometry adapted by BAM will be presented. Within the framework of the TransHyDE flagship project, more results with the goal of supporting the standardization of the hollow specimen technique are expected to be obtained.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Presentation_Tomas_Fuerstenfeld - ZwickRoell Forum.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Tomás Grimault de Freitas
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2023
Organisationseinheit der BAM:9 Komponentensicherheit
9 Komponentensicherheit / 9.0 Abteilungsleitung und andere
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:H2Hohlzug; Hydrogen; Innovation; TransHyDE; Tubular specimen technique
Themenfelder/Aktivitätsfelder der BAM:Energie
Energie / Wasserstoff
Veranstaltung:ZwickRoell Forum for High-Temperature Testing
Veranstaltungsort:Fürstenfeld, Austria
Beginndatum der Veranstaltung:03.05.2023
Enddatum der Veranstaltung:04.05.2023
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:05.05.2023
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.