Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 4 von 55
Zurück zur Trefferliste
Zitieren Sie bitte immer diese URN: urn:nbn:de:kobv:b43-444357

Already Producing or Still Calibrating? – Advances of Model-Based Data Evaluation Concepts for Quantitative Online NMR Spectroscopy

  • The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis movingThe departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu).zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Michael Maiwald
Koautoren/innen:Simon Kern, Svetlana Guhl, Lukas Wander, Klas Meyer, Andrea Paul
Dokumenttyp:Posterpräsentation
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.4 Prozessanalytik
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Industrie 4.0
CONSENS; Process Control; Process Monitoring; Process analytical technology; Smart Sensors; Spectral Modeling
Themenfelder/Aktivitätsfelder der BAM:Analytical Sciences
Analytical Sciences / Sensorik
Veranstaltung:Practical Applications of NMR in Industry Conference (PANIC) 2018
Veranstaltungsort:La Jolla, California, USA
Beginndatum der Veranstaltung:04.03.2018
Enddatum der Veranstaltung:07.03.2018
URN:urn:nbn:de:kobv:b43-444357
Verfügbarkeit des Volltexts:Volltext-PDF für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
Datum der Freischaltung:12.03.2018
Referierte Publikation:Nein
Schriftenreihen ohne Nummerierung:BAM Präsentationen