Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 5 von 70
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-372977

Sicherheitstechnische Eigenschaften von Erdgas-Wasserstoff-Gemischen

  • Bei der Power-to-Gas-Technologie wird überschüssiger Strom aus erneuerbaren Energien durch Elektroly-se von Wasser in Wasserstoff umgewandelt. Dieser Wasserstoff kann als „chemischer Energiespeicher“ dienen und rückverstromt werden oder aber in das Erdgasnetz eingespeist werden. Die BAM hat die Aus-wirkungen von Wasserstoffzusätzen zum Erdgas im Hinblick auf den Explosionsschutz untersucht und sicherheitstechnische Kenngrößen für Erdgas-Wasserstoff-Gemische bestimmt. Untersucht wurden die Explosionsgrenzen, die Sauerstoffgrenzkonzentrationen, die maximalen Explosi-onsdrücke, die KG-Werte und die Normspaltweiten. Für die Messungen sind zwei Modellgase eingesetzt worden, reines Methan und ein Modell-Erdgas mit Anteilen höherer Kohlenwasserstoffe. Sie repräsentie-ren die Bandbreite der in Deutschland eingesetzten Erdgase. Die Untersuchungen ergaben, dass bei einem Zusatz von bis zu 10 Mol-% Wasserstoff keine der untersuchten Kenngrößen relevant beeinflusst wird. Die Gemische haben nurBei der Power-to-Gas-Technologie wird überschüssiger Strom aus erneuerbaren Energien durch Elektroly-se von Wasser in Wasserstoff umgewandelt. Dieser Wasserstoff kann als „chemischer Energiespeicher“ dienen und rückverstromt werden oder aber in das Erdgasnetz eingespeist werden. Die BAM hat die Aus-wirkungen von Wasserstoffzusätzen zum Erdgas im Hinblick auf den Explosionsschutz untersucht und sicherheitstechnische Kenngrößen für Erdgas-Wasserstoff-Gemische bestimmt. Untersucht wurden die Explosionsgrenzen, die Sauerstoffgrenzkonzentrationen, die maximalen Explosi-onsdrücke, die KG-Werte und die Normspaltweiten. Für die Messungen sind zwei Modellgase eingesetzt worden, reines Methan und ein Modell-Erdgas mit Anteilen höherer Kohlenwasserstoffe. Sie repräsentie-ren die Bandbreite der in Deutschland eingesetzten Erdgase. Die Untersuchungen ergaben, dass bei einem Zusatz von bis zu 10 Mol-% Wasserstoff keine der untersuchten Kenngrößen relevant beeinflusst wird. Die Gemische haben nur geringfügig erweiterte Explosionsbereiche und bleiben, wie die reinen Erdgase, in der Explosionsgruppe IIA. Auch die maximalen Explosionsdrücke und die zeitlichen Druckanstiege bei den Gasexplosionen werden nur wenig beeinflusst. Vergleichende Berechnungen zur Festlegung von explosionsgefährdeten Bereichen (Ex-Zonen) auf Basis von Gasausbreitungsberechnungen ergaben ebenfalls nur geringfüge Unterschiede im Rahmen der Fehler-toleranz für Erdgas und Erdgas-Wasserstoff-Gemische mit bis zu 10 Mol-% Wasserstoff. Die Berechnun-gen sind in der BAM nach einem Freistrahlmodell von Schatzmann und mit dem häufig bei Gasnetzbetrei-bern eingesetzten e.BEx-Tool® durchgeführt worden. Der Einsatz von Gaswarngeräten, die für reines Erdgas geeignet sind, ist für Erdgas-Wasserstoff-Gemische mit bis zu 10 Mol-% Wasserstoff grundsätzlich möglich, erfordert aber eine gesonderte Sicher-heitsbewertung und ggf. eine Nachkalibrierung.zeige mehrzeige weniger
  • Power-to-Gas technology is used to convert excess power from renewable energies to hydrogen by means of water electrolysis. This hydrogen can serve as "chemical energy storage" and be converted back to elec-tricity or be fed into the natural gas grid. BAM has studied the addition of hydrogen to natural gas in view of explosion protection and has determined safety characteristics for natural gas-hydrogen mixtures. BAM investigated the explosion limits, the limiting oxygen concentrations, the maximum explosion pres-sures, KG values and the MESG. Two model gases have been investigated, pure methane and a model gas with portions of higher hydrocarbons. They represent the range of natural gases which are used in Germa-ny. The investigations have shown that none of the examined characteristics is affected significantly by the addition of up to 10 mol% hydrogen. The explosion ranges are increased only slightly and the mixtures remain in explosion group IIA; as is pure natural gas. Also thePower-to-Gas technology is used to convert excess power from renewable energies to hydrogen by means of water electrolysis. This hydrogen can serve as "chemical energy storage" and be converted back to elec-tricity or be fed into the natural gas grid. BAM has studied the addition of hydrogen to natural gas in view of explosion protection and has determined safety characteristics for natural gas-hydrogen mixtures. BAM investigated the explosion limits, the limiting oxygen concentrations, the maximum explosion pres-sures, KG values and the MESG. Two model gases have been investigated, pure methane and a model gas with portions of higher hydrocarbons. They represent the range of natural gases which are used in Germa-ny. The investigations have shown that none of the examined characteristics is affected significantly by the addition of up to 10 mol% hydrogen. The explosion ranges are increased only slightly and the mixtures remain in explosion group IIA; as is pure natural gas. Also the maximum explosion pressure and the rates of pressure rise of gas explosions are almost unaffected. Comparative calculations – on the basis of gas dispersion calculations – to determine hazardous areas (explosion zones) for pure natural gas and natural gas-hydrogen mixtures with up to 10 mol% hydrogen, also revealed only minor differences within the margin of error of the calculation methods. The calcula-tions were executed at BAM according to the free jet model from Schatzmann and with the e.BEx-Tool®, often applied by gas grid operators. In principle, gas detectors that are suitable for natural gas can be used for natural gas-hydrogen mixtures with a maximum of 10 mol% hydrogen. However, this requires a separate safety assessment and, if nec-essary, a recalibration.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Volkmar Schröder, Enis AskarORCiD, Abdel Karim Habib, T. Tashqin
Dokumenttyp:Forschungsbericht
Veröffentlichungsform:Eigenverlag BAM
Sprache:Deutsch
Jahr der Erstveröffentlichung:2016
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlagsort:Berlin
Erste Seite:1
Letzte Seite:36
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Energiespeicherung; Erdgas-Wasserstoff-Gemische; Erneuerbare Energien; Explosionsschutz; Power-to-Gas; Wasserstofftechnologie
URN:urn:nbn:de:kobv:b43-372977
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung-Nicht kommerziell-Keine Bearbeitung
Datum der Freischaltung:08.09.2016
Referierte Publikation:Nein
Schriftenreihen ohne Nummerierung:BAM Forschungsberichte ohne Nummerierung
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.