• Treffer 1 von 0
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-489328

Predicting the reactivity of energetic materials: an ab initio multi-phonon approach

  • The ease with which an energetic material (explosives, propellants, and pyrotechnics) can be initiated is a critical parameter to assess their safety and application. Impact sensitivity parameters are traditionally derived experimentally, at great cost and risk to safety. In this work we explore a fully ab initio Approach based on concepts of vibrational energy transfer to predict impact sensitivities for a series of chemically, structurally and energetically diverse molecular materials. The quality of DFT calculations is assessed for a subset of the materials by comparison with experimental inelastic neutron scattering spectra (INS). A variety of models are considered, including both qualitative and quantitative analysis of the vibrational spectra. Excellent agreement against experimental impact sensitivity is achieved by consideration of a multi-phonon ladder-type up-pumping mechanism that includes both overtone and combination pathways, and is improved further by the addedThe ease with which an energetic material (explosives, propellants, and pyrotechnics) can be initiated is a critical parameter to assess their safety and application. Impact sensitivity parameters are traditionally derived experimentally, at great cost and risk to safety. In this work we explore a fully ab initio Approach based on concepts of vibrational energy transfer to predict impact sensitivities for a series of chemically, structurally and energetically diverse molecular materials. The quality of DFT calculations is assessed for a subset of the materials by comparison with experimental inelastic neutron scattering spectra (INS). A variety of models are considered, including both qualitative and quantitative analysis of the vibrational spectra. Excellent agreement against experimental impact sensitivity is achieved by consideration of a multi-phonon ladder-type up-pumping mechanism that includes both overtone and combination pathways, and is improved further by the added consideration of temperature. This fully ab initio approach not only permits ranking of energetic materials in terms of their impact sensitivity but also provides a tool to guide the targeted design of advanced energetic compounds with tailored properties.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Adam MichalchukORCiD, M. Trestman, S. Rudic, P. Portius, P. Fincham, C. Pulham, C. Morrison
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of Materials Chemistry A
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.3 Strukturanalytik
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:RSC
Jahrgang/Band:7
Ausgabe/Heft:33
Erste Seite:19539
Letzte Seite:19553
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Density Functional Theory; Energetic Materials; Prediction
Themenfelder/Aktivitätsfelder der BAM:Material
DOI:10.1039/c9ta06209b
URN:urn:nbn:de:kobv:b43-489328
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung
Datum der Freischaltung:16.09.2019
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:16.09.2019
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.