Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 5 von 2427
Zurück zur Trefferliste
Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:188-refubium-26704-6

Polyaniline/Silicon Dioxide Composite-Based Coating for Corrosion Protection in Geothermal Systems

  • Geothermal energy is one of the cleanest renewable alternatives to reduce the dependency on fossil fuel [1, 2]. Despite its promising future, its implementation faces various challenges, one of them being corrosion processes. To implement this energy, hot fluids are pumped from a geothermal well. These hot fluids originate from deep within the earth, so consist of different ionic species and gases in a wide range of temperatures, which lead to their corrosive nature. In terms of geothermal energy resources, Indonesia is at the forefront, with the highest preserved geothermal energy in the world of about 29 GWe and 312 potential geothermal locations [3]. Geothermal wells in Sibayak (North Sumatera), Indonesia, belong to young stratovolcanoes and have operating temperatures varying from 36 °C at the near ground surface to 310 °C at the bottom of the well, which is liquid-dominated with acidic and saline properties [4, 5]. Therefore, this geothermal fluid creates an aggressive environmentGeothermal energy is one of the cleanest renewable alternatives to reduce the dependency on fossil fuel [1, 2]. Despite its promising future, its implementation faces various challenges, one of them being corrosion processes. To implement this energy, hot fluids are pumped from a geothermal well. These hot fluids originate from deep within the earth, so consist of different ionic species and gases in a wide range of temperatures, which lead to their corrosive nature. In terms of geothermal energy resources, Indonesia is at the forefront, with the highest preserved geothermal energy in the world of about 29 GWe and 312 potential geothermal locations [3]. Geothermal wells in Sibayak (North Sumatera), Indonesia, belong to young stratovolcanoes and have operating temperatures varying from 36 °C at the near ground surface to 310 °C at the bottom of the well, which is liquid-dominated with acidic and saline properties [4, 5]. Therefore, this geothermal fluid creates an aggressive environment that is conducive to corrosion of the powerplant infrastructure. Parts of the geothermal powerplant infrastructure, such as pipelines and heat exchangers, are commonly made of metals, e.g. carbon steel and stainless steel. Consequently, they may undergo corrosion and scaling when exposed to the geothermal fluid, especially for carbon steel. To ensure the safety and longevity of a geothermal powerplant, the infrastructure is constructed of expensive corrosion resistant alloys [6–10], e.g., titanium and Ni-Cr based alloys, or carbon steel which needs to be protected by coatings or inhibitors. To address the corrosion of carbon steel in the geothermal environment, artificial geothermal water was used to simulate a geothermal well in Sibayak, Indonesia, with pH 4 and a saline composition of 1,500 mg/l Cl-, 20 mg/l SO42-, 15 mg/l HCO3-, 200 mg/l Ca2+, 250 mg/l K+, and 600 mg/l Na+. Carbon steel underwent the most severe corrosion at 150°C in an oxygen-containing solution with a corrosion rate of 0.34 mm/year, which is approximately ten times higher than that in the absence of dissolved oxygen. In all conditions, pitting corrosion was observed, which necessitate a protection strategy on carbon steel. In order to promote a cost effective and locally available option, this work focused on an easily applicable coating which utilized local resources. Toward developing such protective coating based on the locally available resources in Indonesia which can yield good corrosion resistance and thermal stability in geothermal environment, two additional components, i.e. polyaniline (PANI) and silicon dioxide, were used to modify an alkyd-based commercial coating. The selection of the alkyd-based coating as a matrix focused on the industrial convenience basis, where the coating application procedure should be simple and easy to apply within reasonable costs. The alkyd-based coating underwent severe blistering when exposed to the artificial geothermal water at 70 and 150°C due to the reaction between CaCO3 (as one of its components) and the artificial geothermal water, as well as a possible alkyd hydrolysis in the initial stage of exposure. In the oxygen-free solution, the degradation was controlled by chemical and thermal reactions, whereas in the aerated condition, oxidization at the coating surface further accelerated polymer degradation. PANI was chosen as one of the anticorrosion pigments which was widely developed over the past decades. To investigate the interaction between PANI and the artificial geothermal water, PANI film was electrochemically deposited on the carbon steel surface and exposed to the artificial geothermal water. Electrochemically synthesized oxalate-doped PANI was protective against corrosion of carbon steel in artificial geothermal water at room temperature. The mechanism involved an exchange of electroactive species within the coating layer, as confirmed by electrochemical impedance spectra. Interaction of ionic species, such as Cl-, Na+, Ca2+ from the artificial geothermal water, with the outer layer of PANI is suggested both at 25°C and 150°C, based on the EDX spectra of the coating surface after exposure to the artificial geothermal water. Thus, the protection mechanism of PANI is not solely based on the physical barrier layer properties, but rather associated with the redox mediated properties of PANI, which selectively allow ionic species intrusion from the electrolyte into the PANI layer. Although PANI is a promising candidate as an anticorrosion coating, its morphological characterization reveals that electrochemically deposited PANI is not stable for an application at 150°C. Therefore, another approach was used to promote better protective behavior of PANI by dispersing chemically synthesized PANI in the alkyd-based coating. To enhance the thermal stability of the coating, silicon dioxide (SiO2) was added, which was able to prolong the sustainability of coated metals until 28 days compared to the unmodified alkyd-based coating, which underwent a change in color to brown/orange only within 7 days of exposure. This improvement might be associated with the role of SiO2 to proportionate the thermal expansion coefficient of the coating system to be compatible with that of carbon steel. Although the coating is thermally enhanced, the electrolyte might still intrude through the coating resulting in the change of coating color after 28 days of exposure in the artificial geothermal water. When PANI was added, the coating system provided an active corrosion protection on the carbon steel surface. The chemical and morphological characterization of the PANI-alkyd and SiO2-alkyd coating system showed that coatings were improved, and no blisters were observed, albeit the degradation continued. Based on the results of exposure tests, the combined coating system was further investigated. The combinational coating of PANI/SiO2-alkyd was used with 2 wt% of PANI and 15 wt% of SiO2. Electrochemical tests indicated cathodic protection at 150°C, as the Ecorr of PANI/SiO2 remained approximately 400 mV lower than the carbon steel potential. The impedance spectra of the combinational coating of PANI/SiO2 showed a continuous decrease in the absolute impedance value over time. A significant decrease was observed within one day of exposure, followed by a slow gradual decrease, which might be associated with water absorption in the coating. FTIR spectra revealed that several peaks associated with the organic portion of the coatings were reduced after the specimens were exposed for 6 months. However, the absorption peaks related to the inorganic portion of the coatings remained stable until 6 months. Morphological characterization of the combinational coating of PANI/SiO2 showed that there were no blisters or significant discoloration of coatings after long-term exposure for 6 months in artificial geothermal water at 150°C, indicating that the chemical degradation does not significantly affect the functionality of the coating. This clearly shows the durability of PANI/SiO2 coating in the geothermal condition, suggesting that this coating can be used for such geothermal application. However, further testing of this coating should be conducted in a real geothermal environment on-site to ensure safety and viability.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Gabriela AristiaORCiD
Dokumenttyp:Dissertation
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Jahr der Erstveröffentlichung:2020
Organisationseinheit der BAM:7 Bauwerkssicherheit
7 Bauwerkssicherheit / 7.6 Korrosion und Korrosionsschutz
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Titel verleihende Institution:Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie
Gutachter*innen:Ralph BäßlerORCiD, B. Sarkar
Datum der Abschlussprüfung:24.01.2020
Verlagsort:Berlin
Erste Seite:1
Letzte Seite:175
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Freie Schlagwörter:Coating; Corrosion; Electrochemical impedance spectroscopy; Geothermal; Polyaniline
Themenfelder/Aktivitätsfelder der BAM:Energie
Material
DOI:10.17169/refubium-26461
URN:urn:nbn:de:kobv:188-refubium-26704-6
URL:https://refubium.fu-berlin.de/handle/fub188/26704
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
Datum der Freischaltung:23.09.2020
Referierte Publikation:Nein
Schriftenreihen ohne Nummerierung:BAM Dissertationen ohne Nummerierung
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.