• Treffer 9 von 1103
Zurück zur Trefferliste
Zitieren Sie bitte immer diese URN: urn:nbn:de:kobv:b43-511719

Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study

  • The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations: 0◦, 45◦, and 90◦ relative to the build plate. Dynamic Young’s modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography (μCT), and texture analysis with electron backscatter diffraction (EBSD). These investigations revealed that the specimens exhibited nearThe underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations: 0◦, 45◦, and 90◦ relative to the build plate. Dynamic Young’s modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography (μCT), and texture analysis with electron backscatter diffraction (EBSD). These investigations revealed that the specimens exhibited near full density and the detected defects were spherical. Furthermore, the residual stresses in the loading direction were between −74 ± 24 MPa and 137 ± 20 MPa, and the EBSD measurements showed a preferential ⟨110⟩ orientation parallel to the build direction. A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Autoren/innen:Amir Charmi, Rainer Falkenberg, Luis Ávila, Gunther Mohr, Konstantin Sommer, Alexander Ulbricht, Maximilian Sprengel, Romeo Saliwan Neumann, Alexander Evans, Birgit Skrotzki
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Materials Science and Engineering: A
Jahr der Erstveröffentlichung:2021
Organisationseinheit der BAM:5 Werkstofftechnik
5 Werkstofftechnik / 5.1 Materialographie, Fraktographie und Alterung technischer Werkstoffe
5 Werkstofftechnik / 5.2 Experimentelle und modellbasierte Werkstoffmechanik
8 Zerstörungsfreie Prüfung
8 Zerstörungsfreie Prüfung / 8.5 Mikro-ZfP
9 Komponentensicherheit
9 Komponentensicherheit / 9.3 Schweißtechnische Fertigungsverfahren
9 Komponentensicherheit / 9.4 Integrität von Schweißverbindungen
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:Elsevier B.V.
Jahrgang/Band:799
Erste Seite:140154
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Crystal plasticity; Laser beam melting (LBM); Mechanical anisotropy; Residual stress; Selective laser melting (SLM)
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Materialien und Stoffe
DOI:https://doi.org/10.1016/j.msea.2020.140154
URN:urn:nbn:de:kobv:b43-511719
ISSN:0921-5093
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - CC BY - Namensnennung 4.0 International
Datum der Freischaltung:09.09.2020
Referierte Publikation:Nein
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM