• Treffer 7 von 3635
Zurück zur Trefferliste

Optimization of surface-functionalized particles for improved antibody digestion

  • Therapeutic monoclonal antibodies are the fastest-growing group of biological agents which generated a yearly turnover of USD 210 billion in 2022 and whose sales are expected to grow by 10% annually over the next 10 years. With steadily increasing market importance, analytical methods for reliable quantification of therapeutic antibodies also become more and more relevant. Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) has become the main technology for antibody quantification. This approach, however, requires enzymatic digestion of the intact protein into peptides, for which a wide range of different protocols exists that often lead to different results depending on the digestion procedure or trypsin variants used. In particular, the amount and type of detergents added for protein unfolding prior to digestion is known to create significant bias in measurement results. The overall goal of the presented project is the application of novel thermostable andTherapeutic monoclonal antibodies are the fastest-growing group of biological agents which generated a yearly turnover of USD 210 billion in 2022 and whose sales are expected to grow by 10% annually over the next 10 years. With steadily increasing market importance, analytical methods for reliable quantification of therapeutic antibodies also become more and more relevant. Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) has become the main technology for antibody quantification. This approach, however, requires enzymatic digestion of the intact protein into peptides, for which a wide range of different protocols exists that often lead to different results depending on the digestion procedure or trypsin variants used. In particular, the amount and type of detergents added for protein unfolding prior to digestion is known to create significant bias in measurement results. The overall goal of the presented project is the application of novel thermostable and surface-functionalized trypsin particles for improved antibody digestion. Specifically, a trypsin-variant described in the literature exhibiting increased activity and thermal stability above 80°C, will be examined. The application of this enzyme should allow to perform digestion at elevated temperatures where the protein is naturally unfolding thereby increasing enzyme accessibility without the need for detergents. Furthermore, we will immobilize the thermostable trypsin onto the surface to further enhance enzyme stability, prevent self-digestion, and enable separation of trypsin from target peptides before LC–MS/MS analysis. As an immobilization platform, cheap and non-porous corundum particles will be used as these show high chemical stability and low levels of interaction of matrix proteins with the functionalized surface. adsorption. In a multidisciplinary collaboration with the SALSA Photonics Lab, we will investigate the characteristics of covalent enzyme binding and unspecific peptide binding using an interface-sensitive analytical tool, vibrational sum-frequency generation (VSFG) spectroscopy. The insights gained will not only lead to new competencies in peptide and enzyme surface analysis using VSFG spectroscopy in SALSA but will also significantly contribute to optimizing antibody quantification.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • FlashTalk_Sarah Doering.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Sarah Döring
Koautor*innen:Zoltán Konthur, Zsuzsanna Heiner
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Englisch
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:1 Analytische Chemie; Referenzmaterialien
1 Analytische Chemie; Referenzmaterialien / 1.8 Umweltanalytik
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Antibody Quantification; Corundum; Enzyme Immobilisation; LC-MS/MS; Vibrational Sum-Frequency Generation Spectroscopy
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Chemie und Prozesstechnik / Chemische Charakterisierung und Spurenanalytik
Veranstaltung:SALSA STF24 Kick-Off Meeting
Veranstaltungsort:Berlin, Germany
Beginndatum der Veranstaltung:11.04.2024
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:18.04.2024
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.