• Treffer 5 von 3635
Zurück zur Trefferliste

Real scale safety investigations of hydrogen jet flames at high pressure

  • In order to reduce the human footprint of CO2 emissions and limit global warming effects hydrogen combustion is becoming increasingly important. To enable fuel cells and gas turbines to operates this carbon free fuel, unprecedently large amounts of hydrogen need to be produced and safely transported and stored. The investigation of the effects of accidents involving hydrogen is therefore becoming of outmost importance. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety regulations. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames.[1-4] To verify these models, a H2 Jet Flame project conducted at BAM, is investigating theIn order to reduce the human footprint of CO2 emissions and limit global warming effects hydrogen combustion is becoming increasingly important. To enable fuel cells and gas turbines to operates this carbon free fuel, unprecedently large amounts of hydrogen need to be produced and safely transported and stored. The investigation of the effects of accidents involving hydrogen is therefore becoming of outmost importance. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety regulations. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames.[1-4] To verify these models, a H2 Jet Flame project conducted at BAM, is investigating the safety of momentum driven hydrogen jet flames. For this purpose, large-scale tests are carried out at the Test Site Technical Safety (BAM-TTS). The object of the investigations is to assess the effects of real scale release scenarios regarding flame geometry and the thermal radiation emitted. Parameters such as release angle, leakage diameter (currently 1 mm to 10 mm), pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s) are varied. In addition, influences such as the type of ignition, ignition location as well as delayed ignition can also be investigated. The gained knowledge will be compared with existing jet flame models, to validate these and identify a possible need for further development. In particular, the focus will be laid on the thermal radiation of hydrogen flames. The challenge here is the visualization and characterization of the flame geometry in an open environment. Visualization is performed using infrared (IR) camera systems from at least two viewing angles. Measurements of the heat radiation of jet flames, which can be found in the literature, are mostly based on unsteady outflow conditions. The experimental setup used here allows for the generation of a steady-state outflow for several minutes and thus a direct comparability with existing (steady-state) models. Furthermore, the tests can be carried out for comparative measurements with hydrocarbons (methane, etc.) as well as mixtures of hydrogen and hydrocarbons.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • EPHYC- Book of Abstracts - Bernardy.pdf
    eng

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Christopher Bernardy, Abdel Karim Habib, Martin Kluge, Bernd Schalau, Hanjo Kant, Marcel Schulze, Alessandro Orchini
Persönliche Herausgeber*innen:A. Nabizada, A. Dechany, B. B. Carré, E. Stendardo, F. Lappa, J. Vanlaere, M.J. Mendoza, M. Dejonghe, M. Daese, N. Namazifard, R. Jacops, S. Jottrand, S. Pahlavan
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Graue Literatur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):EPHyC2024: European PhD Hydrogen Conference, Book of Abstracts
Jahr der Erstveröffentlichung:2024
Organisationseinheit der BAM:2 Prozess- und Anlagensicherheit
2 Prozess- und Anlagensicherheit / 2.1 Sicherheit von Energieträgern
Erste Seite:551
Letzte Seite:556
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Angewandte Physik
Technik, Medizin, angewandte Wissenschaften / Chemische Verfahrenstechnik / Chemische Verfahrenstechnik
Freie Schlagwörter:Hydrogen; Jet flame; Release; Thermal radiation
Themenfelder/Aktivitätsfelder der BAM:Chemie und Prozesstechnik
Chemie und Prozesstechnik / Anlagensicherheit und Prozesssimulation
Energie
Energie / Wasserstoff
Veranstaltung:European PhD Hydrogen Conference 2024 (EPHyC2024)
Veranstaltungsort:Gent, Belgium
Beginndatum der Veranstaltung:20.03.2024
Enddatum der Veranstaltung:22.03.2024
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:19.04.2024
Referierte Publikation:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.