Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 30 von 60
Zurück zur Trefferliste

Das VCSEL-Laser Array – Durch strukturierte Erwärmung mit einer neuartigen Hochleistungslichtquelle verdeckte Defekte thermografisch detektieren

  • Vertical Cavity Surface Emitting Lasers (VCSELs) sind Diodenlaser, welche Laserstrahlung mit gutem Strahlprofil senkrecht zur Chipoberfläche emittieren. Aufgrund dieser vertikalen Bauweise können sie in großen Arrays zu vielen tausenden einzelnen Lasern zusammengefasst werden. Solch ein VCSEL-Array vereint das schnelle zeitliche Verhalten eines Diodenlasers mit der hohen optischen Bestrahlungsstärke und dem großen Beleuchtungsbereich von Blitzlampen oder LEDs und kann damit potentiell alle herkömmlichen Lichtquellen der Thermografie ersetzen. Darüber hinaus kann der Prüfkörper mithilfe dieser Lichtquelle strukturiert erwärmt werden, da einzelne Bereiche des VCSEL-Arrays unabhängig voneinander angesteuert werden können. Dieser neue Freiheitsgrad ermöglicht die Entwicklung neuer thermografischer ZfP-Verfahren. Wir demonstrieren diesen Ansatz anhand eines für die konventionelle Thermografie nur sehr bedingt lösbaren Prüfproblems, der Detektion vertikal zur Oberfläche ausgerichteter,Vertical Cavity Surface Emitting Lasers (VCSELs) sind Diodenlaser, welche Laserstrahlung mit gutem Strahlprofil senkrecht zur Chipoberfläche emittieren. Aufgrund dieser vertikalen Bauweise können sie in großen Arrays zu vielen tausenden einzelnen Lasern zusammengefasst werden. Solch ein VCSEL-Array vereint das schnelle zeitliche Verhalten eines Diodenlasers mit der hohen optischen Bestrahlungsstärke und dem großen Beleuchtungsbereich von Blitzlampen oder LEDs und kann damit potentiell alle herkömmlichen Lichtquellen der Thermografie ersetzen. Darüber hinaus kann der Prüfkörper mithilfe dieser Lichtquelle strukturiert erwärmt werden, da einzelne Bereiche des VCSEL-Arrays unabhängig voneinander angesteuert werden können. Dieser neue Freiheitsgrad ermöglicht die Entwicklung neuer thermografischer ZfP-Verfahren. Wir demonstrieren diesen Ansatz anhand eines für die konventionelle Thermografie nur sehr bedingt lösbaren Prüfproblems, der Detektion vertikal zur Oberfläche ausgerichteter, sehr dünner, verdeckter Defekte in metallischen Werkstoffen. Wir erzeugen hierzu destruktiv interferierende thermische Wellenfelder. Defekte im Einflußbereich dieser thermischen Wellenfelder stören die destruktive Interferenz und erlauben eine hochsensible Detektion bis in Tiefen jenseits der üblichen thermografischen Faustformel, ohne Referenz und ohne Oberflächenbehandlung.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Mi.1.A.5-Ziegler-14.pdf
    deu

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Mathias ZieglerORCiD
Koautor*innen:Erik Thiel, Taarna Studemund
Dokumenttyp:Vortrag
Veröffentlichungsform:Präsentation
Sprache:Deutsch
Jahr der Erstveröffentlichung:2017
DDC-Klassifikation:Naturwissenschaften und Mathematik / Chemie / Analytische Chemie
Freie Schlagwörter:Laser; Thermografie; Zerstörungsfreie Prüfung
Veranstaltung:DGZfP-Jahrestagung 2017
Veranstaltungsort:Koblenz, Germany
Beginndatum der Veranstaltung:22.05.2017
Enddatum der Veranstaltung:24.05.2017
Verfügbarkeit des Dokuments:Datei im Netzwerk der BAM verfügbar ("Closed Access")
Datum der Freischaltung:04.09.2017
Referierte Publikation:Nein
Eingeladener Vortrag:Nein
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.